Basic Electrical Engineering Questions and Answers – Delta Star Transformation

This set of Basic Electrical Engineering Multiple Choice Questions & Answers (MCQs) focuses on “Delta Star Transformation”.

1. The value of the 3 resistances when connected in star connection is_________
Find the Value of 3 resistances when connected in star connection
a) 2.32ohm,1.22ohm, 4.54ohm
b) 3.55ohm, 4.33ohm, 5.67ohm
c) 2.78ohm, 1.67ohm, 0.83ohm
d) 4.53ohm, 6.66ohm, 1.23ohm
View Answer

Answer: c
Explanation: Following the delta to star conversion:
R1=10*5/(10+5+3) = 2.78 ohm
R2=10*3/(10+5+3) = 1.67 ohm
R3=5*3/(10+5+3) = 0.83 ohm.

2. Which, among the following is the right expression for converting from delta to star?
a) R1=Ra*Rb/(Ra+Rb+Rc), R2=Rb*Rc/(Ra+Rb+Rc), R3=Rc*Ra/(Ra+Rb+Rc)
b) R1=Ra/(Ra+Rb+Rc), R2=Rb/(Ra+Rb+Rc), Rc=/(Ra+Rb+Rc)
c) R1=Ra*Rb*Rc/(Ra+Rb+Rc), R2=Ra*Rb/(Ra+Rb+Rc), R3=Ra/(Ra+Rb+Rc)
d) R1=Ra*Rb*Rc/(Ra+Rb+Rc), R2=Ra*Rb*Rc/(Ra+Rb+Rc), R3=Ra*Rb*Rc/(Ra+Rb+Rc)
View Answer

Answer: a
Explanation: After converting to star, each star connected resistance is equal to the ratio of product of the resistances it is connected to and the total sum of the resistances. Hence R1=Ra*Rb/(Ra+Rb+Rc), R2=Rb*Rc/(Ra+Rb+Rc), R3=Rc*Ra/(Ra+Rb+Rc).

3. Find the equivalent star network.
Find the Equivalent star network when resistances connected parallelly
a) 2.3ohm, 2.3ohm, 2.3ohm
b) 1.2ohm, 1.2ohm, 1.2ohm
c) 3.3ohm, 3.3ohm, 3.3ohm
d) 4.5ohm, 4.5ohm, 4.5ohm
View Answer

Answer: b
Explanation: The 6 ohm and 9 ohm resistances are connected in parallel. Their equivalent resistances are: 6*9/(9+6)=3.6 ohm.
The 3 3.6 ohm resistors are connected in delta. Converting to star:
R1=R2=R3= 3.6*3.6/(3.6+3.6+3.6)=1.2 ohm.
advertisement
advertisement

4. Star connection is also known as__________
a) Y-connection
b) Mesh connection
c) Either Y-connection or mesh connection
d) Neither Y-connection nor mesh connection
View Answer

Answer: a
Explanation: The star connection is also known as the Y-connection because its formation is like the letter Y.

5. Rab is the resistance between the terminals A and B, Rbc between B and C and Rca between C and A. These 3 resistors are connected in delta connection. After transforming to star, the resistance at A will be?
a) Rab*Rac/(Rab+Rbc+Rca)
b) Rab/(Rab+Rbc+Rca)
c) Rbc*Rac/(Rab+Rbc+Rca)
d) Rac/(Rab+Rbc+Rca)
View Answer

Answer: a
Explanation: When converting from delta to star, the resistances in star connection is equal to the product of the resistances it is connected to, divided by the total sum of the resistance.
Hence Rab*Rac/(Rab+Rbc+Rca).
Sanfoundry Certification Contest of the Month is Live. 100+ Subjects. Participate Now!

6. Rab is the resistance between the terminals A and B, Rbc between B and C and Rca between C and A. These 3 resistors are connected in delta connection. After transforming to star, the resistance at B will be?
a) Rac/(Rab+Rbc+Rca)
b) Rab/(Rab+Rbc+Rca)
c) Rbc*Rab/(Rab+Rbc+Rca)
d) Rab/(Rab+Rbc+Rca)
View Answer

Answer: c
Explanation: When converting from delta to star, the resistances in star connection is equal to the product of the resistances it is connected to, divided by the total sum of the resistance.
Hence Rab*Rbc/(Rab+Rbc+Rca).

7. Rab is the resistance between the terminals A and B, Rbc between B and C and Rca between C and A. These 3 resistors are connected in delta connection. After transforming to star, the resistance at C will be?
a) Rac/(Rab+Rbc+Rca)
b) Rab/(Rab+Rbc+Rca)
c) Rbc*Rac/(Rab+Rbc+Rca)
d) Rab/(Rab+Rbc+Rca)
View Answer

Answer: c
Explanation: When converting from delta to star, the resistances in star connection is equal to the product of the resistances it is connected to, divided by the total sum of the resistance.
Hence Rac*Rbc/(Rab+Rbc+Rca).
advertisement

8. Find the current in the circuit.
Find the current in the circuit when resistors are connected in delta
a) 0.54A
b) 0.65A
c) 0.67A
d) 0.87A
View Answer

Answer: a
Explanation: The 3 5 ohm resistors are connected in delta. Changing it to star:
R1=R2=R3 = 1.67 ohm.
One of the 1.67 ohm resistors are connected in series with the 2 ohm resistor and another 1.67 ohm resistor is connected in series to the 3 ohm resistor.
The resulting network has a 1.67 ohm resistor connected in series with the parallel connection of the 3.67 and 4.67 resistors.
The equivalent resistance is 3.725A.
I=2/3.725 = 0.54A.

9. If a 6 ohm, 2ohm and 4ohm resistor is connected in delta, find the equivalent star connection.
a) 1ohm, 2ohm, 3ohm
b) 2ohm, 4ohm, 7ohm
c) 5ohm, 4ohm, 2ohm
d) 1ohm, 2ohm, 2/3ohm
View Answer

Answer: d
Explanation: Using the delta to star conversion formula:
R1=2*6/(2+6+4)
R2=2*4/(2+6+4)
R3=4*6/(2+6+4).
advertisement

10. If a 4ohm, 3ohm and 2ohm resistor is connected in delta, find the equivalent star connection.
a) 8/9ohm, 4/3ohm, 2/3ohm
b) 8/9ohm, 4/3ohm, 7/3ohm
c) 7/9ohm, 4/3ohm, 2/3ohm
d) 8/9ohm, 5/3ohm, 2/3ohm
View Answer

Answer: a
Explanation: Using the delta-star conversion formula:
R1=4*3/(2+3+4)
R2=2*3/(2+3+4)
R3=2*4/(2+3+4).

Sanfoundry Global Education & Learning Series – Basic Electrical Engineering.

To practice all areas of Basic Electrical Engineering, here is complete set of 1000+ Multiple Choice Questions and Answers.

If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.