Basic Electrical Engineering Questions and Answers – Analysis of Growth & Decay

This set of Basic Electrical Engineering Multiple Choice Questions & Answers (MCQs) focuses on “Analysis of Growth & Decay”.

1. What is the total applied voltage in an inductive circuit?
a) V=Ri+Ldi/dt
b) V=Ri+di/dt
c) V=i+Ldi/dt
d) V=R+Ldi/dt
View Answer

Answer: a
Explanation: The total voltage in an inductive circuit is the sum of the voltage due to the resistor which is Ri and the voltage due to the inductor which is Ldi/dt. Hence V=Ri+Ldi/dt.

2. What is Helmholtz equation?
a) i=I(eRt/L)
b) i=I(1-e-Rt/L)
c) i=I(1+e-Rt/L)
d) i=I(e-Rt/L)
View Answer

Answer: b
Explanation: Helmholtz equation is an equation which gives the formula for the growth in an inductive circuit. Hence the Helmholtz formula is: i=I(1-e-Rt/L).

3. A coil has a resistance of 4 ohms and an inductance of 2H. It is connected to a 20V dc supply. Calculate the initial value of the current in the circuit.
a) 5A
b) 10A
c) 0 A
d) 20A
View Answer

Answer: c
Explanation: Initially, inductor behave as open circuit for dc current so, i=0.
advertisement

4. A coil has a resistance of 4 ohms and an inductance of 2H. It is connected to a 20V dc supply. Calculate the final value of the current in the circuit.
a) 5A
b) 10A
c) 15A
d) 20A
View Answer

Answer: a
Explanation: The final value of the current in the circuit is:
I=V/R = 5A.

5. A coil has a resistance of 4 ohms and an inductance of 2H. It is connected to a 20V dc supply. Calculate the value of current 1s after the switch is closed.
a) 5.44A
b) 4.32A
c) 6.56A
d) 2.34A
View Answer

Answer: b
Explanation: We know that:
i=I(1-eRt/L)
I=V/R=5A
Substituting the remaining values from the given question, we get i=4.32A.
Free 30-Day Java Certification Bootcamp is Live. Join Now!

6. A coil has a resistance of 4 ohms and an inductance of 2H. It is connected to a 20V dc supply. Calculate the value of voltage 1s after the switch is closed.
a) 5.4V
b) 10.8V
c) 0 V
d) 2.7V
View Answer

Answer: d
Explanation: V=V0e-Rt/L
V=20e-2=2.7V.

7. Among the following, which is the right formula for decay in an inductive circuit?
a) i=I(1-e-t/time constant)
b) i=I(1-et /time constant)
c) i=(1-e-t /time constant)
d) i=I(e-t /time constant)
View Answer

Answer: d
Explanation: The correct formula for decay in an inductive circuit is i=I(e-t /time constant). As the time increases, the current in the inductor decreases, the voltage also increases.

8. The discharging time constant of a circuit consisting of an inductor is the time taken for the voltage in the inductor to become __________ % of the initial voltage.
a) 33
b) 63
c) 37
d) 36
View Answer

Answer: c
Explanation: We know that: V=V0(e-tR/L).
When t=L/R, we have: V=V0(e-1) = 0.37*Vsub>0.
Hence the time constant is the time taken for the voltage in an inductive circuit to become 0.37 times its initial voltage.

9. A coil has a resistance of 4 ohms and an inductance of 2H. It is connected to a 20V dc supply. Calculate the initial value of the voltage across the inductor.
a) 5V
b) 10V
c) 0 V
d) 20V
View Answer

Answer: d
Explanation: Initially, inductor behave as open circuit for dc current so, V = V0 = 20V i.e. same as voltage source.
advertisement

10. A coil has a resistance of 4 ohms and an inductance of 2H. It is connected to a 20V dc supply. Calculate the final value of the voltage across the inductor.
a) 5V
b) 10V
c) 0 V
d) 20V
View Answer

Answer: c
Explanation: At steady state, inductor behaves as a short circuit for dc current so, V=0

Sanfoundry Global Education & Learning Series – Basic Electrical Engineering.

To practice all areas of Basic Electrical Engineering, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 40s–60s and exploring new directions in your career, I also offer mentoring. Learn more here.