This set of Automotive Engine Components Design Interview Questions and Answers for freshers focuses on “IC Engine – Side Crankshaft at Angle of Maximum Torque”.
1. In the formula sinΦ=\(\frac{sinθ}{(l/r)}\), what is Φ?
a) The angle of inclination of the crankshaft with the line of action
b) The angle of inclination of connecting rod with the line of action
c) The angle of inclination of the crankshaft with the line of dead centers
d) The angle of inclination of connecting rod with the line of dead centers
View Answer
Explanation: In the formula sinΦ=\(\frac{sinθ}{(l/r)}\), Φ is the angle of inclination of connecting rod with the line of dead centers and ϴ is the angle of inclination of the crank with a line of dead centers.
2. In the formula sinΦ=\(\frac{sinθ}{(l/r)}\), what is ϴ?
a) The angle of inclination of connecting rod with a line of dead centers
b) The angle of inclination of the crank with a line of action
c) The angle of inclination of the crank with a line of dead centres
d) The angle of inclination of the crank with connecting rod
View Answer
Explanation: In the formula sinΦ=\(\frac{sinθ}{(l/r)}\), Φ is the angle of inclination of connecting rod with the line of dead centers and ϴ is the angle of inclination of the crank with a line of dead centres.
3. In the reaction (R1)v, what does v represent?
a) Reaction on the central plane
b) Reaction on a horizontal plane
c) Reaction on a vertical plane
d) The horizontal and vertical plane
View Answer
Explanation: In the reaction (R1)v, where R1 is the reaction at bearing 1 and v represents the reaction of the bearing 1 in the vertical component.
4. Calculate the bending moment, when Pt=47900N and lc=170mm?
a) 8143KN-mm
b) 5983KN-mm
c) 9075KN-mm
d) 4578KN-mm
View Answer
Explanation: Mb=Pt×lc
=47900×170
=8143KN-mm
5. Calculate the length of the bearing when the diameter of the crankpin is 150?
a) 377mm
b) 262.5mm
c) 938.7mm
d) 654.27mm
View Answer
Explanation: l1=1.75dc
=1.75×150
=262.5mm
6. In the formula l1=1.75dc, what is dc?
a) Diameter of bore
b) The diameter of the connecting rod
c) The diameter of crankpin
d) Diameter of piston
View Answer
Explanation: In the formula l1=1.75dc, l1 is the length of the crankpin and dc is the diameter of the crankpin, generally d is always used to represent diameter.
7. Calculate the length of crankpin when the diameter of crankpin is 150?
a) 120mm
b) 178mm
c) 210mm
d) 160mm
View Answer
Explanation: lc=0.8dc
= 0.8×150
= 120mm
8. In the formula c={\(\frac{l_1}{2}+t+\frac{l_2}{2}+m\)}, what is t?
a) Diameter of piston
b) The diameter of the connecting rod
c) Diameter of bore
d) Width of flywheel
View Answer
Explanation: In the formula c={\(\frac{l_1}{2}+t+\frac{l_2}{2}+m\)}, l1 is the length of the bearing 1, l2 is the length of the bearing 2, t is the width of flywheel and m is the excess part of crankshaft known as margin.
9. Calculate the tangential component, where Pq=71260N, Φ=7.32, ϴ=35?
a) 21878N
b) 18979N
c) 47977N
d) 18978N
View Answer
Explanation: Pt=PqSin(ϴ+Φ)
= 71260×sin (35+7.32)
= 47977N
10. Calculate the radial component, where Pq=71260N, Ф=7.32, ϴ=35?
a) 89173.7N
b) 52689.3N
c) 21938.8N
d) 91732.18N
View Answer
Explanation: Pr= Pqcos(ϴ+Φ)
= 71260×cos (35+7.32)
= 52689.3N
11. Find the symmetry reactions R1 and R2 when load acting is 10KN?
a) 12873N and 7178N
b) 5000N and 6000N
c) 9138N and 21876N
d) 6000N and 12000N
View Answer
Explanation: r1=r2=\(\frac{W}{2}\)
=\(\frac{10000}{2}\)
=5000N
12. Which are the two stresses that act inside crankshaft?
a) Shear and bending stress
b) Compressive and bending stress
c) Tensile and compressive stress
d) Compressive and shear stress
View Answer
Explanation: Compressive and bending stress are the two stresses that act inside crankshaft and two resist these two stresses a reactive force R1 and R2 are produced.
13. Which of the mentioned below is the formula for total compressive stress?
a) A+B=C
b) (σc)t=σc+σb
c) τc=τa+τb
d) ρ=ω+σ
View Answer
Explanation: (σc)t=σc+σb is the formula for total compressive stress, always stress is represented by σ and shear stress is represented by τ. Hence, (σc)t=σc+σb is the right answer.
14. Which of the mentioned below is the equation of resultant bending moment?
a) τ=\(\sqrt{(\eta_b)v^2+(\rho_b)h^2}\)
b) Mb=\(\sqrt{(M_b)v^2+(M_b)h^2}\)
c) ω=\(\sqrt{(M_b)v^2+(M_b)v^2}\)
d) Mb=\(\sqrt{(\omega_b)v^2+(\omega_b)h^2}\)
View Answer
Explanation: Mb=\(\sqrt{(M_b)v^2+(M_b)h^2}\) is the equation of the resultant bending moment. Always resultant is the addition of horizontal and vertical components, and Mb represents the bending moment.
Sanfoundry Global Education & Learning Series – Automotive Engine Components Design.
To practice all areas of Automotive Engine Components Design for Interviews, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Apply for Mechanical Engineering Internship
- Check Mechanical Engineering Books
- Practice Mechanical Engineering MCQs
- Check Automotive Engine Design Books