Physics Questions and Answers – Vector Product of Two Vectors


This set of Physics Multiple Choice Questions & Answers (MCQs) focuses on “Vector Product of Two Vectors”.

1. Regarding the velocity of a particle in uniform circular motion about a fixed axis, select the correct option. w & r angular velocity and radius vectors respectively. ‘X’ & ‘ . ’ represent cross & dot products respectively.
a) v = r X w
b) v = w X r
c) v = w.r
d) w = v.r
View Answer

Answer: b
Explanation: For a particle rotating about a fixed axis, its angular velocity vector points along the axis. Velocity of a particle is a vector so it will be a cross product and not a dot product. Now if we keep our fingers along the direction of the angular velocity vector and curl them in the direction of the radius we get the direction of velocity for that radius vector. Therefore, v = w X r. Refer to the diagram.

2. Which of the following statements is false?
a) Cross product is commutative
b) Cross product is distributive over addition
c) Dot product of two vectors gives a scalar
d) Dot product is commutative
View Answer

Answer: a
Explanation: Cross product a X b ≠ b X a, therefore it is not commutative. a X (b + c) = (a X b) + (a X c), therefore it is distributive over addition. Dot product is also known as scalar product & a.b = b.a, so it is commutative.

3. Find the vector product (a X b) of the two given vectors: a = 2i + 3j + 4k, b = 3i + 5j. Here, i, j & k are unit vectors along three mutually perpendicular axes.
a) -20i + 12j + k
b) 10i + 6j + 1/2k
c) 20i – 12j – k
d) 10i – 6j -1/2k
View Answer

Answer: a
Explanation: The cross product of a & b = i(0-20) – j(0 – 12) + k(10 – 9)
= -20i + 12j + k.
Note that this is not the same as b X a.
Sanfoundry Certification Contest of the Month is Live. 100+ Subjects. Participate Now!

4. There are 6 vectors: a, b, c, d, e, f. Simply the following expression: [ a(b . c) X (e . f)d ] X [ a – d ].‘X’ represents cross product while ’.‘ represents dot product. Vectors a & d are perpendicular.
a) 0
b) (b . c)(e . f) [ d + a ]
c) (b . c)(e . f) [ d – a ]
d) (b . c)(e . f) [ d X a ]
View Answer

Answer: b
Explanation: [ a(b . c) X (e . f)d ] X [ a – d ]
= (b . c)(e . f) { [ a X d ] X [ a – d ] }
= (b . c)(e . f) { [ (a X d) X a ] – [ (a X d) X d ] }
Now, (a X d) is perpendicular to the plane of a & d. Refer to the diagram below.
We see that (a X d) X a = d & (a X d) X d = −a.
Therefore, our expression = (b . c)(e . f) [ d + a ].

Sanfoundry Global Education & Learning Series – Physics – Class 11.

To practice all areas of Physics, here is complete set of 1000+ Multiple Choice Questions and Answers.

Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & technical discussions at Telegram SanfoundryClasses.