Soil Mechanics Questions and Answers – Stress Distribution – Newmark’s Influence Chart

This set of Soil Mechanics Multiple Choice Questions & Answers (MCQs) focuses on “Stress Distribution – Newmark’s Influence Chart”.

1. _________ chart is used to find the vertical stress on Westergaard’s equation.
a) Influence chart
b) Isocurve chart
c) Isobar chart
d) Fenske’s chart
View Answer

Answer: a
Explanation: The influence chart is used to find the vertical stress on Westergaard’s equation. Whereas, an isobar is a curve or contour connecting all points below the ground surface or ground level of equal vertical pressure. In an isobar, at each and every point the vertical pressure is the same.

2. _________ is more accurate method of determining the vertical stress at any point.
a) Isobar chart
b) equivalent point load method
c) Influence chart
d) Fenske’s chart
View Answer

Answer: c
Explanation: The Influence chart or the influence diagram is a more accurate method of determining the vertical stress at any point under a uniformly loaded area of any shape than the equivalent point load method.

3. The Newmark’s influence chart consists of _________
a) a single circle only
b) a number of circles and radiating lines
c) bar diagram
d) small rectangular unit areas
View Answer

Answer: b
Explanation: The Newmark’s influence chart consists of a number of circles and radiating lines, is so prepared that the influence of each area unit is same at the centre of the circle.
advertisement
advertisement

4. If a uniformly loaded circular area is divided into 20 sectors, then the influence value if is given by ___________
a) \(\frac{1}{20}\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\)
b) \(20\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\)
c) \(20\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{5}{2}\right]\)
d) \(\frac{1}{20}\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{5}{2} \right]\)
View Answer

Answer: a
Explanation: Let a uniformly loaded circular area is divided into 20 sectors.
q=load
σz=vertical stress at depth z
The stress at each unit area will be \(\frac{σ_z}{20}\)
∴ \(\frac{σ_z}{20}=\frac{q}{20}\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\)
The influence factor is given by \(i_f=\frac{1}{20}\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2} \right]\).

5. If the influence value \(i_f=\frac{1}{35} \left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \) for a uniformly loaded circular area, then the circular area is divided into _________ sectors.
a) 20
b) 35
c) 7
d) 14
View Answer

Answer: b
Explanation: let the vertical stress be σz.
The Boussinesq’s vertical pressure σz under a uniformly loaded circular area is given by,
\(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
If the area is divided into 35 area units, then the stress in each unit is given by,
\(\frac{σ_z}{35}=\frac{q}{35}\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
Therefore for \(i_f=\frac{1}{35} \left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right], \)
The circular area is divided into 35 sectors.
Sanfoundry Certification Contest of the Month is Live. 100+ Subjects. Participate Now!

6. If a uniformly loaded circular area is divided into 44 sectors, then the influence value if is given by ___________
a) \(\frac{1}{44} \left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
b) \(44\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
c) \(44\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{5}{2}\right] \)
d) \(\frac{1}{44} \left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{5}{2}\right] \)
View Answer

Answer: a
Explanation: Let a uniformly loaded circular area is divided into 44 sectors.
q=load
σz=vertical stress at depth z
The stress at each unit area will be \(\frac{σ_z}{44} \)
∴ \(\frac{σ_z}{44}=\frac{q}{44}\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
The influence factor is given by \(i_f=\frac{1}{44} \left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \).

7. In Newmark’s influence chart method, the point below which pressure is required should lie within the loaded area.
a) True
b) False
View Answer

Answer: b
Explanation: In Newmark’s influence chart method, the point below which pressure is required may lie within the loaded area or outside the loaded area as pressure distributes uniformly in all directions in a homogeneous soil mass.
advertisement

8. The vertical stress under the corner of a uniformly loaded rectangular area of size a, b at depth z and m=a/z, n=b/z is given by ___________
a) \(σ_z=\frac{2q’}{πz}\frac{1}{\left[1+(\frac{x}{z})^2\right]^2}\)
b) \(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}\right] \)
c) \(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}⁡\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \)
d) \(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
View Answer

Answer: c
Explanation: The vertical stress under the corner of a uniformly loaded rectangular area of size a, b at depth z and m=a/z, n=b/z is given by,
\(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}⁡\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \)
m and n are interchangeable terms. The above form of solution is after Newmark(1935).

9. The vertical stress under the corner of a uniformly loaded rectangular area of size 2m*4m at depth 5m and load of 80 kN/m2 is given by ___________
a) 6.22 kN/m2
b) 7.45 kN/m2
c) 8.12 kN/m2
d) 9.23 kN/m2
View Answer

Answer: b
Explanation: Given,
Load q=80 kN/m2
Size of rectangle=2m*4m
Depth z=5m
Therefore m=2/5=0.4
n=4/5=0.8
∴ the vertical stress at the corner of rectangle is given by,
\(σ_z=\frac{q}{4π}\left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}⁡\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \)
∴ \(σ_z=\frac{80}{4π}\left[\frac{2*0.4*0.8\sqrt{(0.4^2+0.8^2+1)}}{0.4^2+0.8^2+0.4^2 0.8^2+1}* \frac{0.4^2+0.8^2+2}{0.4^2+0.8^2+1}+tan^{-1}\frac{2*0.4*0.8\sqrt{(0.4^2+0.8^2+1)}}{0.4^2+0.8^2-0.4^2 0.8^2+1} \right] \)
∴ σz=7.45 kN/m2.
advertisement

10. The influence factor for the vertical stress under the corner of a uniformly loaded rectangular area of size 1m*2m at depth 5m and load of 80 kN/m2 is given by ___________
a) 0.6212
b) 0.7465
c) 0.0328
d) 0.0624
View Answer

Answer: c
Explanation: Given,
Load q=80 kN/m2
Size of rectangle=1m*2m
Depth z=5m
Therefore m=1/5=0.2
n=2/5=0.4
∴ the vertical stress at the corner of rectangle is given by,
\(σ_z=\frac{q}{4π}\left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}⁡\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \)
∴ σz=kq
The influence factor \(k=\frac{1}{4π}\left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}⁡\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \)
\(k=\frac{1}{4π} \left[\frac{2*0.2*0.\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2-0.2^2 0.4^2+1}\right] \)
∴k=0.0328.

11. The Westergaard’s equation is given by ___________
a) \(σ_z=\frac{1}{\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \)
b) \(σ_z=\frac{1}{2\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \)
c) \(σ_z=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}}\frac{Q}{z^2} \)
d) \(σ_z=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \)
View Answer

Answer: c
Explanation: The Westergaard’s equation is given by,
\(σ_z=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}}\frac{Q}{z^2} \)
Where Q=load
Z= depth of point at which load is found
r=radial distance.

12. The Westergaard’s influence factor is given by _____________
a) \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \)
b) \(K_W=\frac{Q}{z^2} \)
c) \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^\frac{5}{2}} \frac{Q}{z^2} \)
d) \(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2 \right]^3}\frac{Q}{z^2} \)
View Answer

Answer: a
Explanation: The Westergaard’s equation is given by,
\(σ_z=\frac{1}{\left[1+2(\frac{r}{z})^2 \right]^\frac{3}{2}} \frac{Q}{z^2}\)
∴ \(σ_z=K_W \frac{Q}{z^2}.\)
Where KW is the Westergaard’s influence factor given by,
\(K_W=\frac{1}{π\left[1+2(\frac{r}{z})^2\right]^\frac{3}{2}}. \)

13. For a uniformly loaded rectangular area, the Newmark’s influence factor given by ___________
a) \(K= \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
b) \(K= \frac{1}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
c) \(K= \frac{1}{4π}\)
d) \(K= \frac{q}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
View Answer

Answer: b
Explanation: The Newmark’s influence factor for a uniformly loaded rectangular area of size a, b at depth z is given by,
\(K= \frac{1}{4π} \left[\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}*\frac{0.2^2+0.4^2+2}{0.2^2+0.4^2+1}+tan^{-1}\frac{20.20.4\sqrt{(0.2^2+0.4^2+1)}}{0.2^2+0.4^2+0.2^2 0.4^2+1}\right] \)
Where m=a/z
n=b/z.
m and n are interchangeable.

14. Find the vertical pressure at depth 5m for a uniformly loaded circular area of 80 kN/m2 load and radius of 5m.
a) 51.72 kN/m2
b) 54.12 kN/m2
c) 78.325 kN/m2
d) 12.24 kN/m2
View Answer

Answer: a
Explanation: Given,
uniformly loaded circular area of radius a=5m
depth z=5m
load q=80 kN/m2
The Boussinesq’s vertical pressure σz under a uniformly loaded circular area is given by,
\(σ_z=q\left[1-\left[\frac{1}{(1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
∴ \(σ_z=80\left[1-\left[\frac{1}{1+(\frac{5}{5})^2}\right]^\frac{3}{2}\right] \)
∴ σz=51.72 kN/m2.

15. Find the influence factor for the vertical pressure at depth 5m for a uniformly loaded circular area of 80 kN/m2 load and radius of 1m.
a) 0.6212
b) 0.0571
c) 0.0328
d) 0.0624
View Answer

Answer: b
Explanation: Given,
uniformly loaded circular area of radius a=1m
depth z=5m
load q=80 kN/m2
The Boussinesq’s vertical pressure σz under a uniformly loaded circular area is given by,
\(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2} \right] \)
∴ σz=kq
∴ \(k=\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
\(K=\left[1-\left[\frac{1}{1+(\frac{1}{5})^2}\right]^\frac{3}{2} \right] \)
k=0.0571.

Sanfoundry Global Education & Learning Series – Soil Mechanics.

To practice all areas of Soil Mechanics, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement

Leave a Comment

Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.