Soil Mechanics Questions and Answers – Elasticity – Boundary Condition Equations

«
»

This set of Soil Mechanics Multiple Choice Questions & Answers (MCQs) focuses on “Elasticity – Boundary Condition Equations”.

1. The boundary condition equation for X, where X is the component of the surface force in x-direction per unit area is ___________
a) X = σy m+τyz n+τxy l
b) X = σz n+τzx l+τzy m
c) X = σx l+τyx m+τzx n
d) X = σy l+τyx m+τzx n
View Answer

Answer: c
Explanation: Let the area of ABC=ds.
The boundary condition equation for X is X = σx l+τyx m+τzx n
area OBC=ds cos(N,x)=ds.l
area OAB=ds cos(N,y)=ds.m
area OAC=ds cos(N,z)=ds.n
Resolving all the forces in x-direction and equating them to zero, we get,
X = σx l+τyx m+τzx n.

2. The boundary condition equation for Y, where Y is the component of the surface force in y-direction per unit area is ___________
a) Y = σy m+τyz n+τxy l
b) Y = σz n+τzx l+τzy m
c) Y = σx l+τyx m+τzx n
d) Y = σy l+τyx m+τzx n
View Answer

Answer: a
Explanation: Let the area of ABC=ds.
The boundary condition equation for X is X = σx l+τyx m+τzx n
area OBC=ds cos(N,x)=ds.l
area OAB=ds cos(N,y)=ds.m
area OAC=ds cos(N,z)=ds.n
Resolving all the forces in y-direction and equating them to zero, we get,
Y = σy m+τyz n+τxy l.

3. The boundary condition equation for Z, where Z is the component of the surface force in z-direction per unit area is ___________
a) Z = σy m+τyz n+τxy l
b) Z = σz n+τzx l+τzy m
c) Z = σx l+τyx m+τzx n
d) Z = σy l+τyx m+τzx n
View Answer

Answer: b
Explanation: Let the area of ABC=ds.
The boundary condition equation for X is X = σx l+τyx m+τzx n
area OBC=ds cos(N,x)=ds.l
area OAB=ds cos(N,y)=ds.m
area OAC=ds cos(N,z)=ds.n
Resolving all the forces in z-direction and equating them to zero, we get,
Z = σz n+τzx l+τzy m.
advertisement
advertisement

4. The matrix form of the boundary condition equations is _____________
a) \(\begin{bmatrix}
\overline{X}\\
\overline{Y}\\
\overline{Z}
\end{bmatrix} =
\begin{bmatrix}
σ_{xx} & τ_{xy} & τ_{xz} \\
τ_{yx} & σ_{yy} & τ_{yz} \\
τ_{zx} & τ_{zy} & σ_{zz}
\end{bmatrix}
\begin{bmatrix}
l \\
m \\
n
\end{bmatrix} \)
b) \(\begin{bmatrix}
\overline{X}\\
\overline{Y}\\
\overline{Z}
\end{bmatrix} =
\begin{bmatrix}
σ_{zz} & τ_{xy} & τ_{xz} \\
τ_{yx} & σ_{yy} & τ_{yz} \\
τ_{zx} & τ_{zy} & σ_{xx}
\end{bmatrix}
\begin{bmatrix}
l \\
m \\
n
\end{bmatrix} \)
c) \(\begin{bmatrix}
\overline{X}\\
\overline{Y}\\
\overline{Z}
\end{bmatrix} =
\begin{bmatrix}
σ_{xx} & τ_{zz} & τ_{xz} \\
τ_{yx} & σ_{yy} & τ_{yz} \\
τ_{zx} & τ_{zy} & σ_{zz}
\end{bmatrix}
\begin{bmatrix}
l \\
m \\
n
\end{bmatrix} \)
d) \(\begin{bmatrix}
\overline{X}\\
\overline{Y}\\
\overline{Z}
\end{bmatrix} =
\begin{bmatrix}
σ_{xx} & τ_{yy} & τ_{xz} \\
τ_{yx} & σ_{yy} & τ_{yz} \\
τ_{zx} & τ_{yy} & σ_{zz}
\end{bmatrix}
\begin{bmatrix}
l \\
m \\
n
\end{bmatrix} \)
View Answer

Answer: a
Explanation: The boundary condition equations are given by,
X = σx l+τyx m+τzx n
Y = σy m+τyz n+τxy l
Z = σz n+τzx l+τzy m,
∴ The matrix form is given by,
\(\begin{bmatrix}
\overline{X}\\
\overline{Y}\\
\overline{Z}
\end{bmatrix} =
\begin{bmatrix}
σ_{xx} & τ_{xy} & τ_{xz} \\
τ_{yx} & σ_{yy} & τ_{yz} \\
τ_{zx} & τ_{zy} & σ_{zz}
\end{bmatrix}
\begin{bmatrix}
l \\
m \\
n
\end{bmatrix} \)

5. The partial differential of normal stress in y-direction in terms of effective stress is given by __________
a) \(\frac{∂σ_z{‘}}{∂z}\)
b) \(\frac{∂σ_z{‘}}{∂z}-γ_w\frac{∂h}{∂z}\)
c) \(\frac{∂σ_z{‘}}{∂z}+γ_w\frac{∂h}{∂z}\)
d) \(\frac{∂σ_z{‘}}{∂z}*γ_w\frac{∂h}{∂z}\)
View Answer

Answer: c
Explanation: Since, the normal stress in y-direction in terms of effective stress is given by,
σz= σz’+γw(h-he)
differentiating partially with respect to z,
\(\frac{∂σ_z}{∂z} = \frac{∂σ_z{‘}}{∂z} +γ_w \frac{∂(h-h_e)}{∂z}\)
But since \(\frac{∂h_e}{∂z}=0,\)
∴ \(\frac{∂σ_z}{∂z} = \frac{∂σ_z{‘}}{∂z} +γ_w \frac{∂h}{∂z}.\)

6. The equilibrium equation in X-direction in terms of effected stress for a saturated soil body is given by __________
a) \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}=0\)
b) \(\frac{∂τ_{xy}}{∂x}+\frac{∂σ_y{‘}}{∂y}+\frac{∂τ_{zy}}{∂z}+γ_w \frac{∂h}{∂x}=0\)
c) \(\frac{∂τ_{xz}}{∂x}+\frac{∂τ_{yz}}{∂y}+\frac{∂σ_z{‘}}{∂z}+γ_w \frac{∂h}{∂x}=0\)
d) \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}+γ_w \frac{∂h}{∂x}=0\)
View Answer

Answer: d
Explanation: The equilibrium equations in terms of total stresses formed by summing all forces on x-direction will include seepage force. Therefore, the equilibrium equations in terms of total stresses formed by summing all forces on x-direction is,
\(\frac{∂σ_x}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}=0.\)
Since σx= σx’+γw(h-he) and \(\frac{∂σ_x}{∂x} = \frac{∂σ_x{‘}}{∂x}+γ_w \frac{∂h}{∂x}\)
∴ \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}+γ_w \frac{∂h}{∂x}=0.\)

7. The equilibrium equation in Y-direction in terms of effected stress for a saturated soil body is given by __________
a) \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}+X=0\)
b) \(\frac{∂τ_{xy}}{∂x}+\frac{∂σ_y{‘}}{∂y}+\frac{∂τ_{zy}}{∂z}+γ_w \frac{∂h}{∂y}=0\)
c) \(\frac{∂τ_{xz}}{∂x}+\frac{∂τ_{yz}}{∂y}+\frac{∂σ_z{‘}}{∂z}+Z=0\)
d) \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}=0\)
View Answer

Answer: b
Explanation: The equilibrium equations in terms of total stresses formed by summing all forces on y-direction will include seepage force. Therefore, the equilibrium equations in terms of total stresses formed by summing all forces on y-direction is,
\(\frac{∂τ_{xy}}{∂x}+ \frac{∂σ_y}{∂y}+\frac{∂τ_{zy}}{∂z}=0.\)
Since σy= σy’+γw(h-he) and \(\frac{∂σ_y}{∂y} = \frac{∂σ_y{‘}}{∂y}+γ_w \frac{∂h}{∂y}\)
∴ \(\frac{∂τ_{xy}}{∂x}+\frac{∂σ_y{‘}}{∂y}+\frac{∂τ_{zy}}{∂z}+γ_w\frac{∂h}{∂y}=0\)
advertisement

8. The equilibrium equation in Z-direction in terms of effected stress for a saturated soil body is given by __________
a) \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}++γ_w \frac{∂h}{∂z}=0\)
b) \(\frac{∂τ_{xy}}{∂x}+\frac{∂σ_y{‘}}{∂y}+\frac{∂τ_{zy}}{∂z}+γ_w \frac{∂h}{∂z}=0\)
c) \(\frac{∂τ_{xz}}{∂x}+\frac{∂τ_{yz}}{∂y}+\frac{∂σ_z{‘}}{∂z}+γ’+γ_w \frac{∂h}{∂z}=0\)
d) \(\frac{∂σ_x{‘}}{∂x}+\frac{∂τ_{yx}}{∂y}+\frac{∂τ_{zx}}{∂z}=0\)
View Answer

Answer: c
Explanation: The equilibrium equations in terms of total stresses formed by summing all forces on z-direction will include seepage force. Therefore, the equilibrium equations in terms of total stresses formed by summing all forces on z-direction is,
\(\frac{∂τ_{xz}}{∂x}+ \frac{∂τ_{yz}}{∂y}+\frac{∂σ_z}{∂z}+γ=0.\)
Since σz= σz’+γw(h-he) and \(\frac{∂σ_z}{∂z} = \frac{∂σ_z{‘}}{∂z}+γ_w \frac{∂h}{∂z}\)
∴ \(\frac{∂τ_{xz}}{∂x}+\frac{∂τ_{yz}}{∂y}+\frac{∂σ_z{‘}}{∂z}+γ’+γ_w \frac{∂h}{∂z}=0\)

Sanfoundry Global Education & Learning Series – Soil Mechanics.

advertisement

To practice all areas of Soil Mechanics, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement

Leave a Comment

Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & technical discussions at Telegram SanfoundryClasses.