This set of Thermodynamics Multiple Choice Questions & Answers (MCQs) focuses on “Boundary Work in a Multistep Process”.

1. A cylinder contains 1kg of ammonia. Initially the ammonia is at 180°C, 2 MPa and is now cooled to saturated vapour at 40°C, and then further cooled to 20°C, at which point the quality is 50%. Find the total work for the process, assuming a linear variation of P versus V.

a) -19.4 kJ

b) -29.4 kJ

c) -39.4 kJ

d) -49.4 kJ

View Answer

Explanation: State 1: (T, P) v1 = 0.10571 m3/kg; State 2: (T, x) sat. vap. P2 = 1555 kPa, v2 = 0.08313 m

^{3}/kg

State 3: (T, x) P3 = 857 kPa, v3 = (0.001638 + 0.14922)/2 = 0.07543 m

^{3}/kg

Work = ⌠PdV = (P1 + P2)m(v2 – v1)/2 + (P2 + P3)m(v3 – v2)/2

= (2000 + 1555)1(0.08313 – 0.10571)/2 + (1555 + 857)1(0.07543 – 0.08313)/2

= -49.4 kJ.

2. A piston cylinder has 1.5 kg of air at 300 K, 150 kPa. It is now heated up in a two step process. First constant volume to 1000 K (state 2) then followed by a constant pressure process to 1500 K, state 3. Find the work in the process.

a) 205.3 kJ

b) 215.3 kJ

c) 225.3 kJ

d) 235.3 kJ

View Answer

Explanation: 1 -> 2: Constant volume V2 = V1 and 2 -> 3: Constant pressure P3 = P2

State 1: T, P => V1 = mRT1/P1 = 1.5×0.287×300/150 = 0.861 m

^{3}

State 2: V2 = V1 => P2 = P1 (T2/T1) = 150×1000/300 = 500 kPa

State 3: P3 = P2 => V3 = V2 (T3/T2) = 0.861×1500/1000 = 1.2915 m

^{3}

Total work = P3(V3 – V2) = 500(1.2915 – 0.861) = 215.3 kJ.

3. A piston-cylinder assembly has 1kg of R-134a at state 1 with 600 kPa, 110°C, and is then brought to saturated vapour, state 2, by cooling. The cooling continues to state 3 where the R-134a is saturated liquid. Find the work in each of the two steps, 1 to 2 and 2 to 3.

a) 0, -20.22 kJ

b) -20.22 kJ,0

c) 0, 0

d) -20.22 kJ, -20.22 kJ

View Answer

Explanation: State 1: (T,P) => v = 0.04943 m3/kg; State 2: v2 = v1 and x2 = 1.0

v2 = v1 = vg = 0.04943 m3/kg => T = 10°C

State 3 reached at constant P (F = constant) v3 = vf = 0.000794 m

^{3}/kg

Since no volume change from 1 to 2 => 1W2 = 0

From 2 to 3: ∫P dV = P(V3 – V2) = mP(v3 – v2) = 415.8 (0.000794 – 0.04943)(1)

= -20.22 kJ.

4. R-22 is contained in a piston-cylinder, where the volume is 11 L when the piston hits the stops. The initial state is 150 kPa, −30°C with V=10 L. This system warms up to 15°C. Find the work done by R-22 during this process.

a) 0.35 kJ

b) 0.25 kJ

c) 0.15 kJ

d) 0.05 kJ

View Answer

Explanation: Initially piston floats, V < V(stop) so piston moves at constant P(ext) = P1 until it reaches the stops or 15°C, whichever is first. v1 = 0.1487 m

^{3}/kg; m = V/v = 0.010/0.1487 = 0.06725 kg

now, P1a = 150 kPa, v = V(stop)/m and v1a = V/m = 0.011/0.06725 = 0.16357 m3/kg

=> T1a = -9°C & T2 = 15°C

Since T2 > T1a then it follows that P2 > P1 and the piston is against stop.

Work = ∫ P(ext) dV = P9ext)(V2 – V1) = 150(0.011 – 0.010) = 0.15 kJ.

5. A piston-cylinder contains 50 kg of water at 200 kPa with V=0.1 m^{3}. Stops in the cylinder restricts the enclosed volume to 0.5 m^{3}. The water is now heated to 200°C. Find the work done by the water.

a) 50 kJ

b) 60 kJ

c) 70 kJ

d) 80 kJ

View Answer

Explanation: Initially the piston floats so the equilibrium lift pressure is 200 kPa

1: 200 kPa, v1= 0.1/50 = 0.002 m

^{3}/kg, and 2: 200°C

v(stop) = 0.5/50 = 0.01 m

^{3}/kg;

State 2 two phase => P2 = Psat(T2) = 1.554 MPa, V2 = V(stop) = 0.5 m

^{3}

1W2 = 1W(stop) = 200 (0.5 – 0.1) = 80 kJ.

6. Ammonia in a piston/cylinder arrangement is at 80°C, 700 kPa. It is now cooled at constant pressure to saturated vapour (state 2) at which point the piston is locked with a pin. The cooling continues to −10°C (state 3). Find the work.

a) -28.64 kJ/kg

b) -38.64 kJ/kg

c) -48.64 kJ/kg

d) -58.64 kJ/kg

View Answer

Explanation: 1W3 = 1W2 + 2W3 = ⌠PdV = P1(V2 – V1) = mP1(v2 – v1)

Since constant volume from 2 to 3; v1 = 0.2367 m

^{3}/kg, P1 = 700 kPa,

v2 = vg = 0.1815 m

^{3}/kg, 1w3 = P1(v2- v1) = 700 × (0.1815 – 0.2367)

= -38.64 kJ/kg.

7. A piston-cylinder contains 1 kg of liquid water at 300 kPa, 20°C. Initially the piston floats, with a maximum enclosed volume of 0.002 m^{3} if the piston touches the stops. Now heat is added so that the final pressure is 600 kPa. Find the work in the process.

a) 0.30 kJ

b) 0.40 kJ

c) 0.50 kJ

d) 0.60 kJ

View Answer

Explanation: State 1: Compressed liquid v = vf(20) = 0.001002 m

^{3}/kg

v(stop) = 0.002 m3/kg , 300 kPa

v2 = v(stop) = 0.002 m

^{3}/kg and V = 0.002 m

^{3}

Work is done while piston moves at P(lift) = constant = 300 kPa

1W2 = ∫ P dV = m*P(lift)*(v2 -v1) = 1 × 300(0.002 − 0.001002) = 0.30 kJ.

8. 10 kg of water in a piston-cylinder exists as saturated liquid/vapour at 100 kPa, with a quality of 50%. It is now heated till the volume triples. The mass of the piston is such that a cylinder pressure of 200kPa will float it. Find the work given out by the water.

a) 3090 kJ

b) 3190 kJ

c) 3290 kJ

d) 3390 kJ

View Answer

Explanation: Process: v = constant until P = P(lift) then P is constant.

State 1: v1 = vf + x vfg = 0.001043 + 0.5 × 1.69296 = 0.8475 m

^{3}/kg

State 2: v2, P2 ≤ P(lift) => v2 = 3 × 0.8475 = 2.5425 m

^{3}/kg;

T2 = 829°C ; V2 = m*v2 = 25.425 m

^{3}

Work = ∫ P dV = P(lift)×(V2 – V1) = 200 kPa × 10 kg × (2.5425 – 0.8475) m

^{3}/kg

= 3390 kJ.

9. Ammonia at 10°C with a mass of 10 kg is in a piston-cylinder arrangement with an initial volume of 1 m^{3}. The piston initially resting on the stops has a mass such that a pressure of 900 kPa will float it. The ammonia is now slowly heated to 50°C. Find the work in the process.

a) 483.2 kJ

b) 583.2 kJ

c) 683.2 kJ

d) 783.2 kJ

View Answer

Explanation: Process: V = constant unless P = P(float)

State 1: T = 10°C, v1 = V/m = 1/10 = 0.1 m

^{3}/kg;

also v(f) < v < v(g) hence x1 = [v - v(f)]/v(fg) = (0.1-0.0016)/0.20381 = 0.4828 State 1a: P = 900 kPa, v = v1 = 0.1 < vg at 900 kPa; two-phase T1a = 21.52°C Since T2 > T1a then v2 > v1a

State 2: 50°C => 900 kPa which is superheated vapor hence

v2 = 0.1648 m

^{3}/kg, V2 = mv2 = 1.648 m

^{3}

Work = ∫ P dV = P(float) (V2 – V1) = 900 (1.648 – 1.0) = 583.2 kJ.

10. A piston-cylinder contains 0.1 kg saturated liquid and vapour water at 100 kPa with quality 25%. The mass of the piston is such that a pressure of 500 kPa will float it. The water is heated to 300°C. Find the work.

a) 2.91 kJ

b) 3.91 kJ

c) 4.91 kJ

d) 5.91 kJ

View Answer

Explanation: Process: v = constant until P = P(lift)

To locate state 1: v1 = 0.001043 + 0.25×1.69296 = 0.42428 m

^{3}/kg

1a: v1a = v1 = 0.42428 m3/kg > vg at 500 kPa, so state 1a is Sup.Vapor T1a = 200°C

State 2 is 300°C so heating continues after state 1a to 2 at constant P

=> 2: T2, P2 = P(lift) => v2 =0.52256 m3/kg ; V2 = mv2 = 0.05226 m

^{3}

1W2 = P(lift)*(V2 – V1) = 500(0.05226 – 0.04243) = 4.91 kJ.

11. A constant pressure piston cylinder contains 0.2 kg water in the form of saturated vapour at 400 kPa. It is now cooled to occupy half the original volume. Find the work in the process.

a) -12.5 kJ

b) -24.5 kJ

c) -8.5 kJ

d) -18.5 kJ

View Answer

Explanation: v1= 0.4625 m

^{3}/kg, V1 = mv1 = 0.0925 m

^{3}

v2 = v1/ 2 = 0.23125 m

^{3}/kg, V2 = V1 / 2 = 0.04625 m

^{3}

Process: P = C

W = ∫ PdV = P(V2-V1) = 400 kPa × (0.04625 – 0.0925) m

^{3}= -18.5 kJ.

12. A piston cylinder contains air at 600 kPa, 290 K and volume of 0.01 m^{3}. A constant pressure process gives out 54 kJ of work. Find the final temperature of the air.

a) 2700 K

b) 2800 K

c) 2900 K

d) 3000 K

View Answer

Explanation: W = ∫ P dV = P∆V hence ∆V = W/P = 54/600 = 0.09m

^{3}

V2 = V1 + ∆V = 0.01 + 0.09 = 0.1 m

^{3}

Assuming ideal gas, PV = mRT,

T2 = P2*V2/(m*R) = [(P2*V2)/(P1*V1)]*T1 = T1*(V2/V1) = (0.1*290)/0.01

= 2900 K.

13. A piston/cylinder has 5m of liquid 20°C water on top of piston with cross-sectional area of 0.1 m^{2}. Air is let in under the piston that rises and pushes the water out. Find the necessary work to push all the water out.

a) 62.88 kJ

b) 52.88 kJ

c) 92.88 kJ

d) 42.88 kJ

View Answer

Explanation: P1 = Po + ρgH = 101.32 + 997 × 9.807 × 5 / 1000 = 150.2 kPa

∆V = H × A = 5 × 0.1 = 0.5 m

^{3}

Work = Area = ∫ P dV = ½ (P1 + Po )(Vmax -V1)

= ½ (150.2 + 101.32) kPa × 0.5 m

^{3}

= 62.88 kJ.

14. A piston/cylinder contains 1 kg water at 20°C with volume 0.1 m^{3}. While the water is heated to saturated vapour, the piston is not allowed to move. Find the final temperature.

a) 201.7°C

b) 211.7°C

c) 215.7°C

d) 221.7°C

View Answer

Explanation: V2 = V1 = 0.1 m

^{3}

T2 = Tsat = 210 + 5[(0.1 – 0.10324)/(0.09361 – 0.10324)] = 211.7°C.

15. A piston cylinder contains 3 kg of air at 20°C and 300 kPa. It is now heated at a constant pressure to 600 K. Find the work in the process.

a) 244.2 kJ

b) 254.2 kJ

c) 264.2 kJ

d) 274.2 kJ

View Answer

Explanation: V1 = mR T1 / P1 = 3 × 0.287 × 293.15/300 = 0.8413 m

^{3}

V2 = mR T2 / P2 = 3 × 0.287 × 600/300 = 1.722 m

^{3}

work = ⌠ PdV = P (V2 – V1) = 300 (1.722 – 0.8413) = 264.2 kJ.

**Sanfoundry Global Education & Learning Series – Thermodynamics.**

To practice all areas of Thermodynamics, __here is complete set of 1000+ Multiple Choice Questions and Answers__.