Heat Transfer Questions and Answers – Nucleate Boiling

«
»

This set of Heat Transfer Problems focuses on “Nucleate Boiling”.

1. Reynolds number is replaced by a modulus significant of the agitation of the fluid particles in nucleate boiling. Such a dimensionless modulus is defined by the relation
a) Re b = 2 D b G bf
b) Re b = D b G bf
c) Re b = ½ D b G bf
d) Re b = 3 D b G bf
View Answer

Answer: b
Explanation: This nucleate boiling regime is of great importance because of the very high heat fluxes possible with moderate temperature differences. Where, D b is the average bubble diameter, G b is the mass velocity of the bubble per unit area and δ f is the fluid viscosity.

2. The bubble diameter has been expressed by Fritz as
a) D b = C d β [2 σ/g (p f – p g)] 1/2
b) D b = C d β [2 σ/g (p f – p g)] 3/2
c) D b = C d β [2 σ/g (p f – p g)] 5/2
d) D b = C d β [2 σ/g (p f – p g)] 7/2
View Answer

Answer: a
Explanation: C d is a constant which has been evaluated as 0.0148 for hydrogen and water bubbles. Where, C d is a constant, σ is surface tension of the liquid and β is the bubble contact angle measured through liquid in degrees.

3. What is the value of surface fluid constant for water-copper combination?
a) 0.010
b) 0.011
c) 0.012
d) 0.013
View Answer

Answer: d
Explanation: The surface fluid regime is of great importance because of the very high heat fluxex possible with moderate temperature differences.
Sanfoundry Certification Contest of the Month is Live. 100+ Subjects. Participate Now!
advertisement
advertisement

4. What is the value of surface fluid constant for water-brass combination?
a) 0.004
b) 0.005
c) 0.006
d) 0.007
View Answer

Answer: c
Explanation: For H 2 O and Brass combination, this value must lie between 0.0056 to 0.00062.

5. Spherical bubbles of 3 mm diameter are observed in the bulk fluid boiling of water at standard atmospheric pressure. Assuming pure water vapor in the bubble and vapor pressure equal to 101.325 k N/m2, calculate the temperature of the vapor
a) 100.217 degree Celsius
b) 200.217 degree Celsius
c) 300.217 degree Celsius
d) 400.217 degree Celsius
View Answer

Answer: a
Explanation: T v – T sat = (2 σ/r – p g) R v T V2/p v h f g.

6. An electric wire of 1.25 mm diameter and 250 mm long is laid horizontally and submerged in water at 7 bar. The wire has an applied voltage of 2.2 V and carries a current of 130 amperes. If the surface of the wire is maintained at 200 degree Celsius, make calculations for the heat flux
a) 0.0915 * 10 6 W/m2
b) 0.1915 * 10 6 W/m2
c) 0.2915 * 10 6 W/m2
d) 0.3915 * 10 6 W/m2
View Answer

Answer: c
Explanation: Q= V I = 286 W and A = 9.81 * 10 -4 m2. Therefore heat flux = Q/A.

7. Consider the above problem, find the boiling heat transfer coefficient
a) 5330 W/m2 K
b) 6330 W/m2 K
c) 7330 W/m2 K
d) 8330 W/m2 K
View Answer

Answer: d
Explanation: Q = h A d t. So, h = 8330 W/m2 K.
advertisement

8. Which of the following parameters affect burnout heat flux in the nucleate boiling region
(i) Heat of evaporation
(ii) Temperature difference
(iii) Density of vapor
(iv) Density of liquid
(v) Surface tension at the vapor-liquid interface
Mark the correct answer from the codes indicated below
a) i, ii, iii and v
b) i, iii, iv and v
c) i, ii, iii and iv
d) i, iii and v
View Answer

Answer: b
Explanation: Acc to Zuber relation, burn out (Q/A) = 0.18 p g h f g [p (p f – p g)/p g 2] 0.25 [p f/p g + p f] 0.5.

9. All the following statements are correct, except
a) Nucleate boiling gets promoted on a smooth surface
b) In subcooled heating, the temperature of the heating surface is more than the boiling point of the liquid
c) Film boiling region is usually avoided in commercial equipment
d) There occurs transition from nucleate to film boiling burn-out point on the boiling curve
View Answer

Answer: a
Explanation: A rough surface gives a better heat transmission than when the surface is either smooth or has been coated to weak its tendency to get wetted.
advertisement

10. Milk spills over when it is boiled in an open vessel. The boiling of milk at this instant is referred to as
a) Interface evaporation
b) Sub-cooled boiling
c) Film boiling
d) Saturated nucleate boiling
View Answer

Answer: b
Explanation: This is an application of sub-cooled boiling.

Sanfoundry Global Education & Learning Series – Heat Transfer.

To practice problems on all areas of Heat Transfer, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & technical discussions at Telegram SanfoundryClasses.