Complex Mapping Questions and Answers – Bilinear Transformation

This set of Complex Mapping Multiple Choice Questions & Answers (MCQs) focuses on “Bilinear Transformation”.

1. Which of the following is the bilinear transformation that maps the points z=0, -1, i onto the points w= 0, -1, i respectively?
a) \( \frac{z+1}{z-i} \)
b) \( \frac{1}{z} \)
c) \( \frac{z+1}{z} \)
d) \( \frac{1}{z+1} \)
View Answer

Answer: a
Explanation:
Given: \( z_1=0, z_2=-1, z_3=i \)
\( w_1=i, w_2=0, w_3=∞ \)
Let the required transformation be
\( \frac{(w-w_1 )(w_2-w_3)}{(w-w_3 )(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} \)
\( \frac{(w-w_1)}{(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} \)
\( \frac{w-i}{0-i}= \frac{(z-0)(-1-i)}{(z-i)(-1-0)} \)
\( \frac{w-i}{-i} = \frac{z}{z-i}(1+i) \)
\( w-i = \frac{z}{(z-i)}(-i+1) \)
\( w= \frac{z}{z-i}(-i+1)+i= \frac{-iz+z+iz+1}{(z-i)} = \frac{z+1}{z-i} \)

2. Which of the following is the bilinear transformation that maps the points z=∞, i, 0 onto the points w=0, i, ∞ respectively?
a) \( \frac{-1}{z} \)
b) \( \frac{1}{z} \)
c) 1
d) -1
View Answer

Answer: a
Explanation:
Given: \( z_1=∞,z_2= i,z_3=0 \)
\( w_1=0,w_2=i,w_3=∞ \)
Let the required transformation be
\( \frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} \)
\( \frac{(w-w_1)}{(w_2-w_1)}= \frac{(z_2-z_3)}{(z-z_3)} \)
\( \frac{w-0}{i-0}= \frac{i-0}{z-0} \)
\( w= \frac{-1}{z} \)

3. Which of the following is the bilinear transformation that maps the points z=1, i, -1 onto the points w=0, 1, ∞ respectively?
a) \( \frac{(-i)z+i}{(1)z+1} \)
b) 1
c) i
d) -1
View Answer

Answer: a
Explanation:
Given:\( z_1=1, z_2= i, z_3=-1 \)
\( w_1=0, w_2=1, w_3=∞ \)
Let the required transformation be
\( \frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} \)
\( \frac{(w-w_1)}{(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} \)
\( \frac{w-0}{1-0} = \frac{(z-1)(i+1)}{(z+1)(i-1)} \)
\( w= \frac{(z-1)(i+1)}{(z+1)(i-1)} \)
\( w= \frac{z-1}{z+1}[-i] \)
\( w= \frac{(-i)z+i}{(1)z+1} \)
advertisement

4. Which of the following is the bilinear transformation that maps the points z=-2i, i, ∞ onto the points w=0,-3, 1/3 respectively?
a) \( \frac{z+2i}{3z-4i} \)
b) \( \frac{(-i)z+i}{(1)z+1} \)
c) \(\frac{-1}{z} \)
d) 1
View Answer

Answer: a
Explanation:
Given: \( z_1=1, z_2= i, z_3=-1 \)
\( w_1=0, w_2=1, w_3=∞ \)
Let the required transformation be
\( \frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)} = \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} \)
\( \frac{(w-w_1)(w_2-w_3)}{(w_2-w_1)(w_2-w_1)}= \frac{(z-z_1)}{(z_2-z_1)} \)
\( \frac{(w)(\frac{-10}{3})}{(\frac{3w-1}{3})(-3)} = \frac{z+2i}{i+2i}= \frac{z+2i}{3i} \)
\( \frac{10w}{(3w-1)} = \frac{z+2i}{i} \)
10wi = 3wz + 6wi-z-2i
10wi-6wi = 3wz-z-2i
w[4i-3z]= – [z+2i]
\( w= \frac{-[z+2i]}{[4i-3z]} = \frac{z+2i}{3z-4i} \)

5. Which of the following images is represented in z plane for the transformation \(\frac{az+b}{cz+d} \) if |a|=|c| to transform the unit circle inw plane?
a) \( x[\frac{2b}{a}-\frac{2d}{c}]+ [\frac{b^2}{a^2} -\frac{d^2}{c^2}]=0 \)
b) \( x[\frac{2a}{b}-\frac{2d}{c}]+ [\frac{b^2}{a^2}-\frac{d^2}{c^2}]=0 \)
c) \( x[\frac{2b}{a}-\frac{2c}{d}]+ [\frac{b^2}{a^2} -\frac{d^2}{c^2}]=0 \)
d) \( x[\frac{2b}{a}-\frac{2d}{c}]+ [\frac{b^2}{a^2} +\frac{d^2}{c^2}]=0 \)
View Answer

Answer: a
Explanation:
The transformation \( w= \frac{az+b}{cz+d} = \frac{a(z+\frac{b}{a})}{c(z+\frac{d}{c})} \)
Given: |w|=1(unit circle in w-plane)
\( |\frac{a}{c}||\frac{(z+\frac{b}{a})}{(z+\frac{d}{c})}|=1 \)
\( |\frac{(z+\frac{b}{a})}{(z+\frac{d}{c})}|=|\frac{c}{a}| \)
If |a|=|c|, then |a/c|= 1
\( |\frac{(z+\frac{b}{a})}{(z+\frac{d}{c})}|=1 →|z+\frac{b}{a}|=|z+\frac{d}{c}| \)
\( |x+\frac{b}{a}+iy|=|x+\frac{d}{c}+iy| \)
\( \sqrt{(x+\frac{b}{a})^2+y^2)}= \sqrt{(x+\frac{d}{c})^2+y^2)} \)
Squaring, we get
\( (x+\frac{b}{a})^2+y^2=(x+\frac{d}{c})^2+y^2 \)
\( (x+\frac{b}{a})^2= (x+\frac{d}{c})^2 \)
\( 2x\frac{b}{a}+\frac{b^2}{a^2} -2x\frac{d}{c}-\frac{d^2}{c^2} =0 \)
\( x[\frac{2b}{a}-\frac{2d}{c}]+ [\frac{b^2}{a^2}-\frac{d^2}{c^2}]=0 \)
which represents a straight line in z plane.
Free 30-Day C Certification Bootcamp is Live. Join Now!

6. Which of the following is the bilinear transformation that maps the points z=-1, 0, 1 onto the points w=0, i, 3i respectively?
a) \(\frac{(-3i)z+(-3i)}{(1)z+(-3)}\)
b) \(\frac{z+(-3i)}{(1)z+(-3)}\)
c) \(\frac{(-3i)z+(i)}{(1)z+(-3)}\)
d) \(\frac{(-3i)z+(-3i)}{(1)z+(-2)}\)
View Answer

Answer: a
Explanation:
Given: \( z_1=-1,z_2= 0,z_3=1 \)
\(w_1=0,w_2=i,w_3=3i \)
Let the required transformation be
\(\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)}= \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}\)
\(\frac{(w-0)(i-3i)}{(w-3i)(i-0)}=\frac{[z-(-1)][0-1]}{(z-1)[0-(-1)]} \)
\(\frac{w(-2i)}{(w-3i)(i)} = \frac{(z+1)(-1)}{(z-1)(1)} \)
\(\frac{-2w}{w-3i}=-\frac{z+1}{z-1} \)
\( \frac{2w}{w-3i}=\frac{z+1}{z-1} \)
2wz-2w=wz+w-3zi-3i
w[2z-2-z-1]= -3i(z+1)
w[z-3]=-3i(z+1)
\(w=-3i \frac{(z+1)}{(z-3)} \)
\(w=\frac{(-3i)z+(-3i)}{(1)z+(-3)} \)

7. Which of the following is the bilinear transformation that maps the points z=-2, 0, 2 onto the points w=0, i, -i respectively?
a) \(\frac{(-i)z+(-2i)}{3z+(-2)}\)
b) \(\frac{z+(-2i)}{3z+(-2)}\)
c) \(\frac{(-i)z+(-i)}{3z+(-2)}\)
d) \(\frac{(-i)z+(2i)}{3z+(-2)}\)
View Answer

Answer: a
Explanation:
Given: \( z_1=-2, z_2= 0, z_3=2 \)
\( w_1=0, w_2=i, w_3=-i \)
Let the required transformation be
\( \frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)}= \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}\)
Let \( A=\frac{w_2-w_3}{w_2-w_1}= \frac{1+i}{i-0}=\frac{2i}{i}=2\)
\(B=\frac{z_2-z_3}{z_2-z_1}= \frac{0-2}{0+2}=-1\)
\(a=Aw_1-Bw_3=(2)(0)-(-1)(-i)= -i\)
\(b=Bw_3 z_1-Aw_1 z_3=(-1)(-i)(-2)-(2)(0)(2)=-2i\)
\(c=A-B=2—1=3\)
\(d=Bz_1-Az_3=(-1)(-2)-(2)(2)= -2 \)
We know that \(w= \frac{az+b}{cz+d}, ad-bc≠0 \)
\(w= \frac{(-i)z+(-2i)}{3z+(-2)} \)

8. Which of the following is the bilinear transformation that maps the points z=1, i, -1 onto the points w=i,0,-i respectively?
a) \(\frac{iz+1}{(-i)z+1}\)
b) \(\frac{iz}{(-i)z+1}\)
c) \(\frac{iz+1}{(-i)z}\)
d) \( \frac{iz+1}{z+1} \)
View Answer

Answer: a
Explanation:
Given: \(z_1=-2,z_2= 0,z_3=2 \)
\( w_1=0,w_2=i,w_3=-i \)
Let the required transformation be
\(\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)}= \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}\)
Let \(A= \frac{w_2-w_3}{w_2-w_1}= \frac{0+i}{0-i}= -1 \)
\(B= \frac{z_2-z_3}{z_2-z_1}= \frac{i+1}{i-1}= -i \)
\(a=Aw_1-Bw_3=(-1)(i)-(-i)(-i)= -i+1 \)
\(b=Bw_3 z_1-Aw_1 z_3=(-i)(-i)(1)-(-1)(i)(-1)= -1-i \)
\(c=A-B=(-1)—i= -1+i \)
\(d=Bz_1-Az_3=(-i)(1)-(-1)(-1)=-i-1 \)
We know that \(w= \frac{az+b}{cz+d}, ad-bc≠0 \)
\(w= \frac{(-i+1)z+(-1-i)}{(-1+i)z+(-i-1)}=\frac{iz+1}{(-i)z+1} \)

9. Which of the following is the bilinear transformation which maps z=0 onto w=-i and has 1 and 1 as the invariant points ?
a) \([\frac{u+iv+i}{(1-v)+iu}][\frac{1-v-iu}{(1-v)^2+u^2}]\)
b) \([\frac{u}{(1-v)+iu}][\frac{v}{(1-v)^2+u^2}]\)
c) \([\frac{u+iv+i}{(1-v)+iu}]\)
d) \([\frac{1-v-iu}{(1-v)^2+u^2}]\)
View Answer

Answer: a
Explanation:
Given: \(z_1=0,z_2= -1,z_3=1 \)
\( w_1=-i,w_2=-1,w_3=1 \)
Let the required transformation be
\(\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)}= \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}\)
\(Let A=\frac{w_2-w_3}{w_2-w_1}= \frac{-1-i}{-1+i}= \frac{-2}{-1+i}=1+i\)
\(B= \frac{z_2-z_3}{z_2-z_1}=\frac{-1-1}{-1-0}=2 \)
\(a=Aw_1-Bw_3=(1+i)(-i)-2(1)=(1+i)(-i)-2(1)=-i+1-2=-i-2 \)
\(b=Bw_3 z_1-Aw_1 z_3=(2)(1)(0)-(1+i)(-i)(1)=i-1 \)
\(c=A-B=(1+i)-2=i-1 \)
\(d=Bz_1-Az_3=(2)(0)-(1+i)(1)= -(1+i) \)
We know that \(w=\frac{az+b}{cz+d} \)
\(w= \frac{(-i-1)z+(i-1)}{(i-1)z+(-1-i)}= \frac{z+(-i)}{(-i)z+1}\)
We know that \(z= \frac{-dw+b}{cw-a}= \frac{-w-i}{-iw-1}=\frac{w+ai}{1+wi}\)
\(z= \frac{u+iv+i}{1+(u+iv)i} \)
\( = \frac{u+iv+i}{1+iu-v}= \frac{u+iv+i}{(1-v)-iu} \)
\( = [\frac{u+iv+i}{(1-v)+iu}][\frac{1-v-iu}{(1-v)^2+u^2}] \)
advertisement

10. Which of the following is the bilinear transformation that maps the points z=1+i, -i, 2 -1 onto the points w=0, 1, i respectively?
a) \(\frac{(-2i)z+(2i-2)}{(1+i)z+(3i-5)} \)
b) \( \frac{z+(2i-2)}{(1+i)z+(3i-5)} \)
c) \(\frac{(-2i)z+2i}{(1+i)z+(3i-5)} \)
d) \(\frac{z+2}{(1+i)z+(3i-5)} \)
View Answer

Answer: a
Explanation:
Given: \( z_1=1+i,z_2= -i,z_3=2-i \)
\( w_1=0,w_2=1,w_3=i \)
Let the required transformation be
\(\frac{(w-w_1)(w_2-w_3)}{(w-w_3)(w_2-w_1)}= \frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)} \)
\(Let A=\frac{w_2-w_3}{w_2-w_1}= \frac{1-i}{1-0}=1-i= \frac{1-i}{1+2i}(1+2i)=\frac{3+i}{1+2i} \)
\(B= \frac{z_2-z_3}{z_2-z_1} = \frac{-i-2+i}{-i-1-i}= \frac{-2}{-1-2i}= \frac{2}{1+2i} \)
\(a=Aw_1-Bw_3=(\frac{3+i}{1+2i})(0)-(\frac{2}{1+2i})(i)= \frac{-2i}{1+2i} \)
\(b=Bw_3 z_1-Aw_1 z_3=(\frac{2}{1+2i})(i)(1+i)-0=\frac{-2+2i}{1+2i} \)
\(c=A-B= \frac{3+i}{1+2i}-\frac{2}{1+2i}= \frac{1+i}{1+2i} \)
\(d=Bz_1-Az_3=(\frac{2}{1+2i})(1+i)-(\frac{3+i}{1+2i})(2-i)=\frac{-5+3i}{1+2i} \)
We know that \( w= \frac{az+b}{cz+d}, ad-bc≠0 \)
\(w=\frac{(\frac{-2i}{1+2i})z+(\frac{2i-2}{1+2i})}{(\frac{1+i}{1+2i})z+(\frac{3i-5}{1+2i})}\)
\(w=\frac{(-2i)z+(2i-2)}{(1+i)z+(3i-5)} \)

11. Which of the following is the fixed point of \( w=\frac{2zi+5}{z-4i}\)?
a) i, 2i
b) i, 3i
c) i, 4i
d) i, 5i
View Answer

Answer: d
Explanation:
The fixed points are given by
\(z=\frac{2zi+5}{z-4i} \) [Replace w by z]
z2-4iz=2zi+5; z2-6zi-5=0
\(z= \frac{6i± \sqrt{-36+20} }{2}=5i,i \)

12. Which of the following is the invariant point of the bilinear transformation \(\frac{z-1}{z+1} \)?
a) i,-i
b) 1,-1
c) 2i
d) -2i
View Answer

Answer: a
Explanation:
The invariant points are given by
\(z=\frac{z-1}{z+1} \)
\(z^2+z=z-1 \)
\(z^2=-1 \)
\(z=±\sqrt{-1}=i,-i \)

13. Which of the following is the invariant point of the bilinear transformation \(w=\frac{1+z}{1-z}\)?
a) ±i
b) ±∞
c) ±1
d) ±2
View Answer

Answer: a
Explanation:
The invariant points are given by
\(z=\frac{1+z}{1-z} \)
z-z2=1+z
z2=-1
z=±i

14. Which of the following is the invariant point of the bilinear transformation \(w=2-\frac{2}{z} \)?
a) 1±i
b) 2±i
c) 3±i
d) i±4
View Answer

Answer: a
Explanation:
The invariant points are given by
\(z=2-\frac{2}{z}; z=\frac{2z-2}{z} \)
z2= 2z-2; z2-2z+2=0
\(z=\frac{2±\sqrt{4-8}}{2}= \frac{2±\sqrt{-4}}{2}=\frac{2±2i}{2}=1±i \)

15. Which of the following is the invariant point of the transformation \(w=\frac{3z-4}{z-1} \)?
a) 2,2
b) 1,1
c) 0
d) 3,3
View Answer

Answer: a
Explanation:
The fixed points are given by
\( z=\frac{3z-4}{z-1} \)
z2-z=3z-4
z2-4z+4=0
(z-2)2=0
z=2,2

Sanfoundry Global Education & Learning Series – Engineering Mathematics.

To practice all areas of Engineering Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 40s–60s and exploring new directions in your career, I also offer mentoring. Learn more here.