Matrices Questions and Answers – Solving Equations by Crout’s Method


This set of Matrices Multiple Choice Questions & Answers (MCQs) focuses on “Solving Equations by Crout’s Method”.

1. Solve the given equations using Crout’s Method to get value of z.

2x + 3y + z = -1
5x + y + z = 9
3x + 2y + 4z = 11

a) \(\frac{22}{7}\)
b) 8
c) \(\frac{21}{8}\)
d) \(\frac{32}{7}\)
View Answer

Answer: c
Explanation: For the given sets of equations,
The Matrix form is given by
\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}-1\\9\\11\end{bmatrix}\)
As the form of AX=B
Let A be assumed to be LU
By comparing both sides
a=2, b=5, d=3
g=\(\frac{3}{2}\), c=\(\frac{-13}{2}\), e=\(\frac{-5}{2}\), h=\(\frac{1}{2}\), f=\(\frac{40}{13}\) and i=\(\frac{3}{13}\)
L=\(\begin{bmatrix}2&0&0\\5&\frac{-13}{2}&0\\3&\frac{-5}{2}&\frac{40}{13}\end{bmatrix}\) and U=\(\begin{bmatrix}1& \frac{3}{2}&\frac{1}{2}\\0&1&\frac{3}{13}\\0&0&1\end{bmatrix}\)
Now LY=B where Y=UX
\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}-1\\9\\11\end{bmatrix}\)
Comparing Directly,
y1=\(\frac{-1}{2}\) y2=\(\frac{-23}{13}\) y3=\(\frac{21}{8}\)
Assume UX=Y
\(\begin{bmatrix}1& \frac{3}{2}&\frac{1}{2}\\0&1&\frac{3}{13}\\0&0&1\end{bmatrix}
\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}\frac{-1}{2}\\\frac{-23}{12}\\\frac{21}{8}\end{bmatrix}\)
Comparing both sides we get.
Thus, the value of y is \(\frac{21}{8}\).

Sanfoundry Global Education & Learning Series – Matrices.


To practice all areas of Matrices, here is complete set of 1000+ Multiple Choice Questions and Answers.

Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & technical discussions at Telegram SanfoundryClasses.