This set of Engineering Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Rank of Matrix in PAQ and Normal Form”.
1. Reduce the given matrix to normal form, and hence find its rank.
\(\begin{bmatrix}1& 2& -2& 3\\ 2& 5& -4& 6\\ -1& -3& 2& -2\\ 2& 4& -1& 6\end{bmatrix}\)
a) 1
b) 4
c) 3
d) 2
View Answer
Explanation: In this Question we have,
A=\(\begin{bmatrix}1& 2& -2& 3\\ 2& 5& -4& 6\\ -1& -3& 2& -2\\ 2& 4& -1& 6\end{bmatrix}\)
By R2-2R1 and R3+R1 and R4-2R1
A=\(\begin{bmatrix}1& 2& -2& 3\\ 0& 1& 0 & 0\\ 0& -1& 0 & 1\\ 0& 0 & 3& 0\end{bmatrix}\)
By C2-2C1, C3+2C1, C4-3C1
A=\(\begin{bmatrix}1& 0& 0 & 0\\ 0& 1 & 0 & 0\\ 0& -1 & 0 &1 \\ 0& 0 & 3 &0 \end{bmatrix}\)
By R2+R3
A=\(\begin{bmatrix}1& 0 & 0 &0 \\0 & 1 & 0 & 0\\0 & 0 & 0& 1\\ 0& 0 & 3 & 0\end{bmatrix}\)
By C34
A=\(\begin{bmatrix}1& 0 & 0 &0 \\0 & 1 & 0 &0 \\ 0& 0 & 1 & 0\\ 0& 0 & 0 & 3\end{bmatrix}\)
By \(\frac{1}{3}\) C4
A=\(\begin{bmatrix}1& 0 & 0 &0 \\0 & 1 & 0 &0 \\ 0& 0 & 1 & 0\\ 0& 0 & 0 & 1\end{bmatrix}\)
This is in Normal Form.
Hence the rank of the given Matrix is 4.
2. Find the value of p for which, the rank of the given matrix is 1.
\(\begin{bmatrix}3&p&p\\p&3&p\\p&p&3\end{bmatrix}\)
a) 4
b) 2
c) 3
d) 1
View Answer
Explanation: In this Question we have,
A=\(\begin{bmatrix}3&p&p\\p&3&p\\p&p&3\end{bmatrix}\)
If we put the value of p=3,
The matrix becomes:
A=\(\begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}\)
By R2-R1 and R3-R1
A=\(\begin{bmatrix}3&3&3\\0&0&0\\0&0&0\end{bmatrix}\)
Thus, the rank of the given matrix is 1.
Therefore, the value of p must be 3.
3. Find the value of non singular matrices P and Q, such that PAQ is in the normal form, where A is
\(\begin{bmatrix}1&1&2\\1&2&3\\0&-1&-1\end{bmatrix}\)
a) \(\begin{bmatrix}1&0&0\\-1&1&0\\-1&1&1\end{bmatrix}\), \(\begin{bmatrix}1&-1&-1\\0&1&-1\\0&0&1\end{bmatrix}\)
b)\(\begin{bmatrix}1&1&0\\-1&1&0\\-1&1&1\end{bmatrix}\), \(\begin{bmatrix}1&-1&-1\\0&1&-1\\0&0&1\end{bmatrix}\)
c)\(\begin{bmatrix}1&0&0\\-1&1&0\\-1&1&1\end{bmatrix}\), \(\begin{bmatrix}1&-1&1\\0&1&-1\\0&0&1\end{bmatrix}\)
d)\(\begin{bmatrix}1&0&0\\-1&1&0\\-1&0&1\end{bmatrix}\), \(\begin{bmatrix}1&-1&-1\\0&1&-1\\0&0&-1\end{bmatrix}\)
View Answer
Explanation: In this Question we have,
A=\(\begin{bmatrix}1&1&2\\1&2&3\\0&-1&-1\end{bmatrix}\)
Let A=I3AI3
By C2-C1 and C3-2C1
By R2-R1
\(\begin{bmatrix}1&0&0\\0&1&1\\0&-1&-1\end{bmatrix}\)=\(\begin{bmatrix}1&0&0\\-1&1&0\\0&0&1\end{bmatrix}\)A\(\begin{bmatrix}1&-1&-2\\0&1&0\\0&0&1\end{bmatrix}\)
By C3-C2
\(\begin{bmatrix}1&0&0\\0&1&0\\0&-1&0\end{bmatrix}\)=\(\begin{bmatrix}1&0&0\\-1&1&0\\0&0&1\end{bmatrix}\)A\(\begin{bmatrix}1&-1&-1\\0&1&-1\\0&0&1\end{bmatrix}\)By R3+R2
\(\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}\)=\(\begin{bmatrix}1&0&0\\-1&1&0\\-1&1&1\end{bmatrix}\)A\(\begin{bmatrix}1&-1&-1\\0&1&-1\\0&0&1\end{bmatrix}\)This is in Normal Form.
\(\begin{bmatrix}I2&0\\0&0\end{bmatrix}\)=PAQP=\(\begin{bmatrix}1&0&0\\-1&1&0\\-1&1&1\end{bmatrix}\) and
Q=\(\begin{bmatrix}1&-1&-1\\0&1&-1\\0&0&1\end{bmatrix}\).
Sanfoundry Global Education & Learning Series – Linear Algebra.
To practice all areas of Engineering Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Apply for 1st Year Engineering Internship
- Practice Numerical Methods MCQ
- Practice Probability and Statistics MCQ
- Check Engineering Mathematics Books