Complex Function Theory Questions and Answers – Analyticity

This set of Complex Function Theory Multiple Choice Questions & Answers (MCQs) focuses on “Analyticity”.

1. Which of the following is the function such that w = u + iv is analytic, ifu = ex sin⁡y?
a) -iez + C
b) iez + C
c) ez + C
d) -ez + C
View Answer

Answer: a
Explanation:
Given: u = ex sin⁡y
ux = ex sin⁡y, ux (z,0) = 0     [∴ sin⁡0 = 0]
uy = ex cos⁡y, uy (z,0) = ez     [∴ cos⁡0 = 1]
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy     [by C.R.equation]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C     [by Milne – Thomson rule]
where C is a complex constant.
∴ f(z) = ∫0 dz – i∫ez dz + C
= -iez + C

2. Which of the following is the analytic function f(z) for which the real part is ex cos⁡y?
a) iez + C
b) -iez + C
c) ez + C
d) -ez + C
View Answer

Answer: c
Explanation:
Given: u = ex cos⁡y
ux = ex cos⁡y, ux (z,0) = ez     [∴ cos⁡0 = 1]
uy = -ex sin⁡y, uy (z,0) = 0     [∴sin⁡0 = 0]
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy     [by C.R. condition]
f(z) = ∫ ux (z,0) dz – i∫ uy (z,0) dz + C [by Milne – Thomson rule] where C is a complex constant.
∴ f(z) = ∫ez dz – i∫0 dz + C
= ez + C

3. Which of the following is the analytic function f(z) = u(x,y) + iv(x,y) whose real part is y + ex cos⁡y?
a) ez – iz + C
b) ez + iz + C
c) -ez – iz + C
d) -ez + iz + C
View Answer

Answer: a
Explanation:
Given: u = y + ex cos⁡y
ux = 0 + ex cos⁡y
uy = 1 – ex sin⁡y
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy     [by C.P.condition]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C     [by Milne – Thomson rule]
where C is a complex constant
f(z) = ∫ez dz – i∫dz + C
= ez – iz + C
advertisement

4. Which of the following is the analytic function w = u + iv if u = e2x (x cos⁡2y – y sin⁡2y) ?
a) ze2z + C
b) -ze2z + C
c) e2z + C
d) z + C
View Answer

Answer: a
Explanation:
Given: u = e2x (x cos⁡2y – y sin⁡2y)
ux = e2x [cos⁡2y] + (x cos⁡2y – y sin⁡2y)
ux (z,0) = e2z [1] + [z(1) – 0][2e2z] = e2z + 2z e2z
= (1 + 2z) e2z i.e., ux (z,0) = (1 + 2z)e2z
uy = e2x [- 2x sin⁡2y – (y2 cos⁡2y + sin⁡2y)] uy (z,0) = e2z [- 0 – (0 + 0) ] = 0 i.e., uy (z,0) = 0
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy
f(z) = ∫ ux (z,0) dz – i ∫ uy (z,0)dz + C [by Milne – Thomson rule] where C is a complex constant.
f(z) = ∫(1 + 2z) e2z dz – i∫0 dz + C
= ∫(1 + 2z) e2z dz + C
= (1 + 2z) e2z/2 – 2e2z/4 + C     [∴ ∫uv dz = uv1 – u v2 + u v3 – …]
= \(\frac {e^{2z}}{2}\) + ze2z – \(\frac {e^{2z}}{2}\) + C = ze2z + C

5. Which of the following is the analytic function where real part is u = x3 – 3xy2 + 3x2 – 3y2 + 1?
a) z3 + 3z2 + C
b) -z3 + 3z2 + C
c) z3 – 3z2 + C
d) -z3 – 3z2 + C
View Answer

Answer: a
Explanation:
Given: u = x3 – 3xy2 + 3x2 – 3y2 + 1
ux = 3x2 – 3y2 + 6x, ux (z,0) = 3z2 – 0 + 6z
uy = 0 – 6xy + 0 – 6y, uy (z,0) = 0
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy     [by C.R.Equation]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0)dz + C [by Milne – Thomson method] where C is a complex constant
f(z) = ∫(3z2 + 6z)dz – i∫0 dz + C
= 3 \(\frac {z^{3}}{3}\) + 6 \(\frac {z^{2}}{2}\) + C
= z3 + 3z2 + C
Free 30-Day C Certification Bootcamp is Live. Join Now!

6. Which of the following is the analytic function whose real part is \(\frac {sin⁡2x}{cosh⁡2y – cos⁡2x}\)?
a) z3 + 3z2 + C
b) z3 – 3z2 + C
c) cot⁡z + C
d) -cot⁡z + C
View Answer

Answer: c
Explanation:
u = \(\frac {sin⁡2x}{cosh⁡2y – cos⁡2x}\)

ux = \(\frac {cosh⁡2y – cos⁡2x)[2 cos⁡2x] – sin⁡2x [2 sin⁡2x]}{[cosh⁡2y – cos⁡2x] ^{2 }}\)
ux (z,0) = \(\frac {(1 – cos⁡2z) (2 cos⁡2z) – 2sin^2 2z}{1 – cos⁡2z)^{2}}\)

= \(\frac {2 cos⁡2z – 2 cos^2 2z – 2sin^2 2z}{1 – cos⁡2z)^{2}} = \frac {2 cos⁡2z – 2[cos^2 2z + sin^2 2z]}{(1 – cos⁡2z)^{2}}\)

= \(\frac {2 cos⁡2z – 2}{(1 – cos⁡2z)^{2}} = \frac { – 2(1 – cos⁡2z)}{(1 – cos⁡2z)^{2}} = \frac {- 2}{1 – cos⁡2z} = \frac {- 2}{2sin^2 z}\)
= -cosec2z i.e., ux (z,0) = -cosec2z
uy = \(\frac {(cosh⁡2y – cos⁡2x)(0) – sin⁡2x[2 sinh⁡2y]}{cosh⁡2y – cos⁡2x) ^{2}}\)

uy (z,0) = 0
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy     [by C.R.condition]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C     [by Milne – Thomson method]
where C is a complex constant.
f(z) = ∫ – cosec2z dz – i ∫0 dz + C
= cot⁡z + C

7. Which of the following is the analytic function whose real part is (x cos⁡y – y sin⁡y) ?
a) zez + C
b) -zez + C
c) ez + C
d) -ez + C
View Answer

Answer: a
Explanation:
u = ex (x cos⁡y – y sin⁡y)
ux = ex [cos⁡y] + (x cos⁡y – y sin⁡y) [ex]
ux (z,0) = ez (1) + (z – 0) ez = ez + zez = (1 + z) ez
uy = ex [- xsin y – (y cos⁡y + sin⁡y)]
uy (z,0) = ez [- 0 – (0 + 0) ] = 0
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy     [by C.R.condition]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C     [by Milne – Thomson method]
f(z) = ∫(1 + z) ez dz – i(0) + C
= (1 + z) ez dz – (1) ez + C
f(z) = zez + C

8. Which of the following is the analytic function whose real part is \(\frac {1}{2}\) log⁡(x2 + y2)?
a) log⁡z + C
b) log \(\frac {1}{z}\) + C
c) log⁡z2 + C
d) log⁡z3 + C
View Answer

Answer: a
Explanation:
Given: u = \(\frac {1}{2}\) log⁡(x2 + y2)
ux = \(\frac {1}{2} \frac {1}{x^2 + y^{2}}\)(2x) = \(\frac {x}{x^2 + y^{2′}}\), ux (z,0) = \(\frac {1}{z}\)
uy = latex]\frac {1}{2} \frac {1}{x^2 + y^{2}}[/latex](2x) = \(\frac {x}{x^2 + y^{2′}}\), uy (z,0) = 0
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy     [by C.R.condition]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C     [by Milne – Thomson method]
where C is a complex constant
f(z) = ∫\(\frac {1}{z}\) dz – i ∫0 dz + C
= log⁡z + C

9. Which of the following is an analytic function f(z) = u + iv, given that u = ex2 – y2 cos⁡2xy?
a) ez2 + C
b) -ez2 + C
c) 1 + ez2 + C
d) 1 – ez2 + C
View Answer

Answer: a
Explanation:
u = ex2 – y2 cos⁡2xy = ex2 e-y2 cos⁡2xy
ux = e-y2 [ex2(- 2y sin⁡2xy) + cos⁡2xy ex22x] ux (z,0) = 2zez2
uy (z,0) = ez2 (0 + 0) = 0
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy     [by C.R.condition]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C [by Milne – Thomson method] where C is a complex constant
= ∫2 z ex2 dz + C
Put t = z2, dt = 2z dz
= ∫et dt + C
= et + C
f(z) = ex2 + C
advertisement

10. Which of the following is the analytic function whose imaginary part is e-x (x cos⁡y + y sin⁡y) ?
a) i z e-z + C
b) -i z e-z + C
c) z e-z + C
d) i e-z + C
View Answer

Answer: a
Explanation:
v = e-x (x cos⁡y + y sin⁡y)
vx = e-x [cos⁡y] + (x cos⁡y + y sin⁡y)[- e-x]
vx (z,0) = e-z + (z)( – e-z) = (1 – z) e-z vx (z,0) = (1 – z)e-z
vy = e-z [- x sin⁡y + (y cos⁡y + sin⁡y (1))] vy (z,0) = e-z [0 + 0 + 0] = 0
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy     [by C.R.condition]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C     [by Milne – Thomson method]
where C is a complex constant
f(z) = ∫0 dz + i∫(1 – z) e-z dz + C
= i∫(1 – z) e-z dz + C
= i\( \bigg [ \)(1 – z)\(\big [\frac {e^{-z}}{ – 1} \big ]\) – ( – 1)\(\big [\frac {e^{-z}}{ – 1^{2}} \big ] \bigg ] \) + C
= i[- (1 – z) e-z + e-z ] + C
= i z e-z + C

11. Which of the following is the velocity potential φ if the stream function is ∅ = tan-1⁡(\(\frac {y}{x}\))?
a) log⁡z + C
b) log \(\frac {1}{z}\)⁡ + C
c) log z2⁡ + C
d) log⁡z3 + C
View Answer

Answer: a
Explanation:
Given: ∅ = tan-1⁡(\(\frac {y}{x}\))
We should denote, φ by u and ∅ by v
∴v = tan-1⁡(\(\frac {y}{x}\))
vx = \(\frac {1}{1 + (\frac {y}{x})^{2}} \big [ \frac { – y}{x^{2}} \big ] = \frac { – y}{x^2 + y^{2′}}\), vx (z,0) = 0
vy = \(\frac {1}{1 + (\frac {y}{x})^{2}} \big [ \frac { 1}{x} \big ] = \frac { x}{x^2 + y^{2′}}\), vy (z,0) = \(\frac {1}{z}\)
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy [by C.R.condition] f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C [by Milne – Thomson method] where C is a complex constant
f(z) = ∫\(\frac {1}{z}\) dz + i ∫0 dz + C
= log⁡z + C
So, the velocity potential is ∅ = \(\frac {1}{2}\) log⁡(x2 + y2)

12. Which of the following is the real part if the imaginary part is x2 – y2 + \(\frac {x}{x^2 + y^{2}}\)?
a) i[z2 + \(\frac {1}{z}\) ] + C
b) – i[z2 + \(\frac {1}{z}\) ] + C
c) [z2 + \(\frac {1}{z}\) ] + C
d) – [z2 + \(\frac {1}{z}\) ] + C
View Answer

Answer: a
Explanation:
Given: v = is x2 – y2 + \(\frac {x}{x^2 + y^{2}}\)
vx = 2x – 0 + \(\frac {(x^2 + y^2)(1) – x(2x)}{(x^2 + y^2)^{2}}\)
= 2x + \(\frac {y^2 – x^{2}}{x^2 + y^{2})^{2}}\), vx (z,0) = 2z + \(\frac {-z^{2}}{(z^{2})^{2}}\)
vx (z,0) = 2z – \(\frac {1}{z^{2}}\)
vy = 0 – 2y + \(\frac {0 – x(2y)}{x^2 + y^2){2}}\)
= -2y \(\frac {- 2xy}{(x^2 + y^2)^{2}}\), vy (z,0) = 0
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy [by C.R.condition]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C [by Milne – Thomson method]
where C is a complex constant
f(z) = ∫0 dz + i∫(2z – \(\frac {1}{z^{2}}\)) dz + C
= i\( \bigg [ \frac {(2z^{2}}{2} + \frac {1}{z} \bigg ] \) + C
= i[z2 + \(\frac {1}{z}\) ] + C

13. The function f(z) = e-2x cos⁡2y can be the real or imaginary part of an analytic function.
a) True
b) False
View Answer

Answer: a
Explanation:
Let f(z) = e-2x cos⁡2y
fx = – 2e-2x cos⁡2y
fyyxx = 4e-2x cos⁡2y
fy = – 2 e-2x sin⁡2y
fyy = – 4 e-2x cos⁡2y
f_xx + fyy = 0
In a simply connected domain, every harmonic function is the real part or the imaginary part
of some analytic function.
Therefore, Given function can be a real or imaginary part of of an analytic function.

14. Which of the following is an analytic function f(z) in terms of z if u – v = ex (cos⁡y – sin⁡y) ?
a) ez + C
b) – ez + C
c) iez + C
d) – iez + C
View Answer

Answer: a
Explanation:
Given: u – v = ex (cos⁡y – sin⁡y) ………(1)
Differentiating (1) w.r.t. x,we get
ux – vx = ex (cos⁡y – sin⁡y)
ux (z,0) – vx (z,0) = ez………(2)
Differentiating (1) w.r.t. y,we get
uy – vy = ex [- sin⁡y – cos⁡y]
uy (z,0) – vy (z,0) = ez (- 1)
– vx (z,0) – ux (z,0) = – ez………(3) [by C.R.condition]
(1) + (2) = – 2 vx (z,0) = ez – ez = 0
vx (z,0) = 0
ux (z,0) = ez
Let w = f(z) = u + iv
f(z) = ux + i vx
= ux – i uy [by C.R.condition]
f(z) = ∫ ux (z,0)dz – i∫ uy (z,0) dz + C [by Milne – Thomson method]
where C is a complex constant
f(z) = ∫ez dz + i(0) + C
= ez + C

15. 2x(1 – y) can be the imaginary part of an analytic function.
a) True
b) False
View Answer

Answer: a
Explanation:
In a simply connected domain, every harmonic function is the real part or imaginary part of some
analytic function.
Let v = 2x(1 – y)
vx = 2(1 – y)
vx x = 0
vy = -2x
vyy = 0
Thus, vx x + vyy = 0
Hence, v is harmonic and therefore, it can be the imaginary part of an analytic function.

Sanfoundry Global Education & Learning Series – Complex Function Theory.

To practice all areas of Complex Function Theory, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 40s–60s and exploring new directions in your career, I also offer mentoring. Learn more here.