This set of Differential and Integral Calculus Multiple Choice Questions & Answers (MCQs) focuses on “Rectification in Polar and Parametric Forms”.
1. Find the length of the curve given by the equation.
\(x^{\frac{2}{3}}+y^\frac{2}{3}=a^\frac{2}{3}\)
a) \(\frac{3a}{2}\)
b) \(\frac{-7a}{2}\)
c) \(\frac{-3a}{4}\)
d) \(\frac{-3a}{2}\)
View Answer
Answer: d
Explanation: We know that,
S=\(\int_{x1}^{x2}\sqrt{1+\frac{dy}{dx}^2}\)
\(y^\frac{2}{3}=a^\frac{2}{3}-x^\frac{2}{3}\)
Differentiating on both sides
\(\frac{2}{3} y^{\frac{2}{3}-1}= \frac{-2}{3} x^{\frac{2}{3}-1}\)
\(\frac{dy}{dx} = -\frac{y}{x}^{\frac{1}{3}}\)
\((\frac{dy}{dx})^2 = (\frac{y}{x})^{\frac{1}{3}}\)
\(1+(\frac{dy}{dx})^2=1+(\frac{y}{x})^\frac{2}{3}\)
Substituting from the original equation-
\(1+(\frac{dy}{dx})^2=(\frac{a}{x})\frac{2}{3}\)
\(\sqrt{1+\frac{dy^2}{dx}}=(\frac{a}{x})^{\frac{1}{3}}\)
\(S=\int_{a}^{0}(\frac{a}{x})^{\frac{1}{3}} dx \)
\(s=\frac{-3a}{2}\)
Thus, length of the given curve is \(\frac{-3a}{2}\).
Explanation: We know that,
S=\(\int_{x1}^{x2}\sqrt{1+\frac{dy}{dx}^2}\)
\(y^\frac{2}{3}=a^\frac{2}{3}-x^\frac{2}{3}\)
Differentiating on both sides
\(\frac{2}{3} y^{\frac{2}{3}-1}= \frac{-2}{3} x^{\frac{2}{3}-1}\)
\(\frac{dy}{dx} = -\frac{y}{x}^{\frac{1}{3}}\)
\((\frac{dy}{dx})^2 = (\frac{y}{x})^{\frac{1}{3}}\)
\(1+(\frac{dy}{dx})^2=1+(\frac{y}{x})^\frac{2}{3}\)
Substituting from the original equation-
\(1+(\frac{dy}{dx})^2=(\frac{a}{x})\frac{2}{3}\)
\(\sqrt{1+\frac{dy^2}{dx}}=(\frac{a}{x})^{\frac{1}{3}}\)
\(S=\int_{a}^{0}(\frac{a}{x})^{\frac{1}{3}} dx \)
\(s=\frac{-3a}{2}\)
Thus, length of the given curve is \(\frac{-3a}{2}\).
2. Find the length of one arc of the given cycloid.
x=a(θ-sinθ) y=a(1+cosθ)
a) a
b) 4a
c) 8a
d) 2a
View Answer
Answer: c
Explanation: We know that
\(s=\int_{\theta1}^{\theta2}\sqrt{(\frac{dx}{d\theta})^2+(\frac{dy}{d\theta})^2}\)
\(\frac{dx}{d\theta}=a(1-cos\theta)\)
\(\frac{dy}{d\theta}=a(-sin\theta)\)
\((\frac{dx}{d\theta})^2+(\frac{dy}{d\theta})^2=a^2(1-cos\theta)^2+a^2 sin^2\theta\)
\((\frac{dx}{d\theta})^2+(\frac{dy}{d\theta})^2=4a^2 sin^2\frac{\theta}{2}\)
\(s=\int_{0}^{2}\pi\sqrt{4a^2 sin^2\frac{\theta}{2}} d\theta\)
On solving the given integral, we get
s=8a
Thus length of one arc of the given cycloid is 8a.
Explanation: We know that
\(s=\int_{\theta1}^{\theta2}\sqrt{(\frac{dx}{d\theta})^2+(\frac{dy}{d\theta})^2}\)
\(\frac{dx}{d\theta}=a(1-cos\theta)\)
\(\frac{dy}{d\theta}=a(-sin\theta)\)
\((\frac{dx}{d\theta})^2+(\frac{dy}{d\theta})^2=a^2(1-cos\theta)^2+a^2 sin^2\theta\)
\((\frac{dx}{d\theta})^2+(\frac{dy}{d\theta})^2=4a^2 sin^2\frac{\theta}{2}\)
\(s=\int_{0}^{2}\pi\sqrt{4a^2 sin^2\frac{\theta}{2}} d\theta\)
On solving the given integral, we get
s=8a
Thus length of one arc of the given cycloid is 8a.
advertisement
advertisement
Sanfoundry Global Education & Learning Series – Differential and Integral Calculus.
To practice all areas of Differential and Integral Calculus, here is complete set of 1000+ Multiple Choice Questions and Answers.
Related Posts:
- Practice Probability and Statistics MCQ
- Practice Numerical Methods MCQ
- Check Engineering Mathematics Books
- Apply for 1st Year Engineering Internship