This set of Engineering Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Improper Integrals – 2”.
1. Find the value of ∫tan-1(x)dx.
a) sec-1 (x) – 1⁄2 ln(1 + x2)
b) xtan-1 (x) – 1⁄2 ln(1 + x2)
c) xsec-1 (x) – 1⁄2 ln(1 + x2)
d) tan-1 (x) – 1⁄2 ln(1 + x2)
View Answer
Explanation: Add constant automatically
Given, ∫tan-1(x)dx
Putting, x = tan(y),
We get, dy = sec2(y)dy,
∫ysec2(y)dy
By integration by parts,
ytan(y) – log(sec(y)) = xtan-1 (x) – 1⁄2 ln(1 + x2).
2. Integration of (Sin(x) + Cos(x))ex is?
a) ex Cos(x)
b) ex Sin(x)
c) ex Tan(x)
d) ex (Sin(x) + Cos(x))
View Answer
Explanation: Add constant automatically
Let f(x) = ex Sin(x)
∫ex Sin(x)dx = ex Sin(x) – ∫ex Cos(x)dx
∫ex Sin(x)dx + ∫ex Cos(x)dx = ∫ex [Cos(x) + Sin(x)]dx = ex Sin(x).
3. Find the value of ∫x3 Sin(x)dx.
a) x3 Cos(x) + 3x2 Sin(x) + 6xCos(x) – 6Sin(x)
b) – x3 Cos(x) + 3x2 Sin(x) – 6Sin(x)
c) – x3 Cos(x) – 3x2 Sin(x) + 6xCos(x) – 6Sin(x)
d) – x3 Cos(x) + 3x2 Sin(x) + 6xCos(x) – 6Sin(x)
View Answer
Explanation: Add constant automatically
Let f(x) = x3 Sin(x)
∫x3 Sin(x)dx = – x3 Cos(x) + 3∫x2 Cos(x)dx
∫x2 Cos(x)dx = x2 Sin(x) – 2∫xSin(x)dx
∫xSin(x)dx = – xCos(x) + ∫Cos(x)dx = – xCos(x) + Sin(x)
=> ∫x3 Sin(x)dx = – x3 Cos(x) + 3[x2 Sin(x) – 2[ – xCos(x) + Sin(x)]]
=> ∫x3 Sin(x)dx = – x3 Cos(x) + 3x2 Sin(x) + 6xCos(x) – 6Sin(x).
4. Value of ∫uv dx,where u and v are function of x.
a) \(\sum_{i=1}^n(-1)^i u_i v^{i+1}\)
b) \(\sum_{i=0}^nu_i v^{i+1}\)
c) \(\sum_{i=0}^n(-1)^i u_i v^{i+1}\)
d) \(\sum_{i=0}^n(-1)^i u_i v^{n-i}\)
View Answer
Explanation: Add constant automatically
Given, f(x)=\(\int uvdx=\sum_{i=0}^n (-1)^i u_i v^{i+1}\)
5. Find the value of ∫x7 Cos(x) dx.
a) x7 Sin(x) + 7x6 Cos(x) + 42x5 Sin(x) + 210x4 Cos(x) + 840x3 Sin(x) + 2520x2 Cos(x) + 5040xSin(x) + 5040Cos(x)
b) x7 Sin(x) – 7x6 Cos(x) + 42x5 Sin(x) – 210x4 Cos(x) + 840x3 Sin(x) – 2520x2 Cos(x) + 5040xSin(x) – 5040Cos(x)
c) x7 Sin(x) + 7x6 Cos(x) + 42x5 Sin(x) + 210x4 Cos(x) + 840x3 Sin(x) + 2520x2 Cos(x) + 5040xSin(x) + 5040Cos(x)
d) x7 Sin(x) + 7x6 Cos(x) + 42x5 Sin(x) + 210x4 Cos(x) + 840x3 Sin(x) + 2520x2 Cos(x) + 5040xSin(x) + 10080Cos(x)
View Answer
Explanation: Add constant automatically
By, f(x)=\(\int uvdx=\sum_{i=0}^n (-1)^i u_i v^{i+1}\)
Let, u = x7 and v = Cos(x),
∫x7 Cos(x) dx = x7 Sin(x) + 7x6 Cos(x) + 42x5 Sin(x) + 210x4 Cos(x) + 840x3 Sin(x) + 2520x2 Cos(x) + 5040xSin(x) + 5040Cos(x)
6. Find the value of ∫x3 ex e2x e3x….enx dx.
a) \(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2 +6[\frac{2}{n(n+1)}]^3\right ]\)
b) \(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2 +6[\frac{2}{n(n+1)}]^3\right ]\)
c)\(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2 +6[\frac{2}{n(n+1)}]^3\right ]\)
d)\(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2 +6[\frac{2}{n(n+1)}]^3\right ]\)
View Answer
Explanation: Add constant automatically
By, f(x)=\(\int uvdx=\sum_{i=0}^n (-1)^i u_i v^{i+1}\)
Let, u = x3 and v=ex e2x e3x…..enx=ex(1+2+3+…n)=\(e^{\frac{n(n+1)x}{2}}\),
\(\int x^3 e^x e^2x e^3x……..e^nx dx\)
\(=x^3 \frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x}+3x^2 [\frac{2}{n(n+1)}]^2 e^{\frac{n(n+1)}{2}x}\)
\(+6x[\frac{2}{n(n+1)}]^3 e^{\frac{n(n+1)}{2}x}+6[\frac{2}{n(n+1)}]^4 e^{\frac{n(n+1)}{2}x}\)
=\(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2+6[\frac{2}{n(n+1)}]^3\right]\)
7. Find the area of a function f(x) = x2 + xCos(x) from x = 0 to a, where, a>0.
a) a2⁄2 + aSin(a) + Cos(a) – 1
b) a3⁄3 + aSin(a) + Cos(a)
c) a3⁄3 + aSin(a) + Cos(a) – 1
d) a3⁄3 + Cos(a) + Sin(a) – 1
View Answer
Explanation: Given, f(x) = x2 + xCos(x)
Hence, F(x) = ∫x2 + xCos(x) dx = x3⁄3 + xSin(x) + Cos(x)
Hence, area inside f(x) is,
F(a) – F(0) = a3⁄3 + aSin(a) + Cos(a) – 1.
8. Find the area ln(x)⁄x from x = x = aeb to a.
a) b2⁄2
b) b⁄2
c) b
d) 1
View Answer
Explanation:
Let, F(x)=\(\int \frac{ln(x)}{x} dx\)
Let, z=ln(x)=>dz=dx/x
=F(x)=∫ zdz=\(\frac{z^2}{2}=\frac{ln^2(x)}{2}\)
Area inside curve from 4a to a is,
\(F(ae^b)-F(a)=\frac{ln^2(ae^b )}{2}-\frac{ln^2(a)}{2}=\frac{ln^2(\frac{ae^b}{a})}{2}=\frac{ln^2(e^b)}{2}=\frac{b}{2}\)
9. Find the area inside a function f(t) = \( \frac{t}{(t+3)(t+2)} dt\) from t = -1 to 0.
a) 4 ln(3) – 5ln(2)
b) 3 ln(3)
c)3 ln(3) – 4ln(2)
d) 3 ln(3) – 5 ln(2)
View Answer
Explanation:
Now, F(t)=\(\int \frac{t}{(t+3)(t+2)} dt\)
F(t)=\(\int \frac{t}{(t+3)(t+2)} dt\)
=\(\int [\frac{3}{t+3}-\frac{2}{t+2}]dx\)
=\(\int [\frac{3}{t+3}]dx-\int [\frac{2}{t+2}]dx\)
=3 ln(t+3)-2ln(t+2)
Now area inside a function is, F(0) – F(-1),
hence, F(0)-F(-1)=3 ln(3)-2 ln(2)-3 ln(2)+2 ln(1)=3 ln(3)-5ln(2)
10. Find the area inside integral f(x)=\(\frac{sec^4(x)}{\sqrt{tan(x)}}\) from x = 0 to π.
a) π
b) 0
c) 1
d) 2
View Answer
Explanation:
Given,F(x)=\(\int \frac{sec^4 (x)}{\sqrt{tan(x)}} dx\)
F(x)=\(\int \frac{sec^2 (x) sec^2 (x)}{\sqrt{tan(x)}} dx\)
=\(\int \frac{1+t^2}{\sqrt{t}} dt\)
=\(\int [\frac{1}{\sqrt{t}}+t^{3/2}]dt\)
=\(2\sqrt{t}+\frac{2}{5} t^{5/2}\)
F(x)=\(\frac{2}{5} \sqrt{tan(x)} [5+tan^2(x)]\)
Now area inside a function f(x) from x=0 to π, is
F(π)-F(0)=0-0=0
11. Find the area inside function \(\frac{(2x^3+5x^2-4)}{x^2}\) from x = 1 to a.
a) a2⁄2 + 5a – 4ln(a)
b) a2⁄2 + 5a – 4ln(a) – 11⁄2
c) a2⁄2 + 4ln(a) – 11⁄2
d) a2⁄2 + 5a – 11⁄2
View Answer
Explanation: Add constant automatically
Given,
f(x) = \(\frac{(2x^3+5x^2-4)}{x^2}\),
Integrating it we get, F(x) = x2⁄2 + 5x – 4ln(x)
Hence, area under, x = 1 to a, is
F(a) – F(1)=a2⁄2 + 5a – 4ln(a) – 1/2 – 5=a2⁄2 + 5a – 4ln(a) – 11⁄2
12. Find the value of ∫(x4 – 5x2 – 6x)4 4x3 – 10x – 6 dx.
a) \(\frac{(x^4-5x^2-6x)^4}{4}\)
b) \(\frac{(x^4-5x^2-6x)^5}{5}\)
c) \(\frac{(4x^3-10x-6)^5}{5}\)
d) \(\frac{(4x^3-10x-6)^4}{4}\)
View Answer
Explanation: Add constant automatically
Given, \(\int (x^4-5x^2-6x)^4 4x^3-10x-6 dx\)
putting, \(x^4-5x^2-6x=z\), we get, \(dz=4x^3-10x-6 dx\)
\(\int z^4 dz=\frac{z^5}{5}=\frac{(x^4-5x^2-6x)^5}{5}\)
13. Temperature of a rod is increased by moving x distance from origin and is given by equation T(x) = x2 + 2x, where x is the distance and T(x) is change of temperature w.r.t distance. If, at x = 0, temperature is 40 C, find temperature at x=10.
a) 473 C
b) 472 C
c) 474 C
d) 475 C
View Answer
Explanation: Temperature at distance x is,
T = ∫T(x) dx = ∫x2 + 2x dx = x3⁄3 + x2 + C
At x=0 given T = 40 C
C = T(x = 0) = 40 C
At x= 10,
T(x = 10) = 1000⁄3 + 100 + 43 = 473 C.
14. Find the value of \(\int \frac{1}{16x^2+16x+10}dx\).
a) 1⁄8 sin-1(x + 1⁄2)
b) 1⁄8 tan-1(x + 1⁄2)
c) 1⁄8 sec-1(x + 1⁄2)
d) 1⁄4 cos-1(x + 1⁄2)
View Answer
Explanation: Add constant automatically
Given, \(\int \frac{1}{16x^2+16x+10}dx=\frac{1}{2}\int \frac{1}{4x^2+4x+5}dx\)
=\(\int \frac{1}{8(x^2+x+\frac{5}{4}+\frac{1}{4}+\frac{1}{4})}dx=\int \frac{1}{8[(x+\frac{1}{2})^2+1^2]}dx=\frac{1}{8}tan^{-1}(x+\frac{1}{2})\)
Sanfoundry Global Education & Learning Series – Engineering Mathematics.
To practice all areas of Engineering Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Apply for 1st Year Engineering Internship
- Practice Probability and Statistics MCQ
- Check Engineering Mathematics Books
- Practice Numerical Methods MCQ