Engineering Mathematics Questions and Answers – Improper Integrals – 2

This set of Engineering Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Improper Integrals – 2”.

1. Find the value of ∫tan-1⁡(x)dx.
a) sec-1 (x) – 12 ln⁡(1 + x2)
b) xtan-1 (x) – 12 ln⁡(1 + x2)
c) xsec-1 (x) – 12 ln⁡(1 + x2)
d) tan-1 (x) – 12 ln⁡(1 + x2)
View Answer

Answer: b
Explanation: Add constant automatically
Given, ∫tan-1⁡(x)dx
Putting, x = tan(y),
We get, dy = sec2(y)dy,
∫ysec2(y)dy
By integration by parts,
ytan(y) – log⁡(sec⁡(y)) = xtan-1 (x) – 12 ln⁡(1 + x2).

2. Integration of (Sin(x) + Cos(x))ex is?
a) ex Cos(x)
b) ex Sin(x)
c) ex Tan(x)
d) ex (Sin(x) + Cos(x))
View Answer

Answer: b
Explanation: Add constant automatically
Let f(x) = ex Sin(x)
∫ex Sin(x)dx = ex Sin(x) – ∫ex Cos(x)dx
∫ex Sin(x)dx + ∫ex Cos(x)dx = ∫ex [Cos(x) + Sin(x)]dx = ex Sin(x).

3. Find the value of ∫x3 Sin(x)dx.
a) x3 Cos(x) + 3x2 Sin(x) + 6xCos(x) – 6Sin(x)
b) – x3 Cos(x) + 3x2 Sin(x) – 6Sin(x)
c) – x3 Cos(x) – 3x2 Sin(x) + 6xCos(x) – 6Sin(x)
d) – x3 Cos(x) + 3x2 Sin(x) + 6xCos(x) – 6Sin(x)
View Answer

Answer: d
Explanation: Add constant automatically
Let f(x) = x3 Sin(x)
∫x3 Sin(x)dx = – x3 Cos(x) + 3∫x2 Cos(x)dx
∫x2 Cos(x)dx = x2 Sin(x) – 2∫xSin(x)dx
∫xSin(x)dx = – xCos(x) + ∫Cos(x)dx = – xCos(x) + Sin(x)
=> ∫x3 Sin(x)dx = – x3 Cos(x) + 3[x2 Sin(x) – 2[ – xCos(x) + Sin(x)]]
=> ∫x3 Sin(x)dx = – x3 Cos(x) + 3x2 Sin(x) + 6xCos(x) – 6Sin(x).
advertisement

4. Value of ∫uv dx,where u and v are function of x.
a) \(\sum_{i=1}^n(-1)^i u_i v^{i+1}\)
b) \(\sum_{i=0}^nu_i v^{i+1}\)
c) \(\sum_{i=0}^n(-1)^i u_i v^{i+1}\)
d) \(\sum_{i=0}^n(-1)^i u_i v^{n-i}\)
View Answer

Answer: c
Explanation: Add constant automatically
Given, f(x)=\(\int uvdx=\sum_{i=0}^n (-1)^i u_i v^{i+1}\)

5. Find the value of ∫x7 Cos(x) dx.
a) x7 Sin(x) + 7x6 Cos(x) + 42x5 Sin(x) + 210x4 Cos(x) + 840x3 Sin(x) + 2520x2 Cos(x) + 5040xSin(x) + 5040Cos(x)
b) x7 Sin(x) – 7x6 Cos(x) + 42x5 Sin(x) – 210x4 Cos(x) + 840x3 Sin(x) – 2520x2 Cos(x) + 5040xSin(x) – 5040Cos(x)
c) x7 Sin(x) + 7x6 Cos(x) + 42x5 Sin(x) + 210x4 Cos(x) + 840x3 Sin(x) + 2520x2 Cos(x) + 5040xSin(x) + 5040Cos(x)
d) x7 Sin(x) + 7x6 Cos(x) + 42x5 Sin(x) + 210x4 Cos(x) + 840x3 Sin(x) + 2520x2 Cos(x) + 5040xSin(x) + 10080Cos(x)
View Answer

Answer: a
Explanation: Add constant automatically
By, f(x)=\(\int uvdx=\sum_{i=0}^n (-1)^i u_i v^{i+1}\)
Let, u = x7 and v = Cos(x),
∫x7 Cos(x) dx = x7 Sin(x) + 7x6 Cos(x) + 42x5 Sin(x) + 210x4 Cos(x) + 840x3 Sin(x) + 2520x2 Cos(x) + 5040xSin(x) + 5040Cos(x)
Free 30-Day Python Certification Bootcamp is Live. Join Now!

6. Find the value of ∫x3 ex e2x e3x….enx dx.
a) \(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2 +6[\frac{2}{n(n+1)}]^3\right ]\)
b) \(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2 +6[\frac{2}{n(n+1)}]^3\right ]\)
c)\(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2 +6[\frac{2}{n(n+1)}]^3\right ]\)
d)\(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2 +6[\frac{2}{n(n+1)}]^3\right ]\)
View Answer

Answer: a
Explanation: Add constant automatically
By, f(x)=\(\int uvdx=\sum_{i=0}^n (-1)^i u_i v^{i+1}\)
Let, u = x3 and v=ex e2x e3x…..enx=ex(1+2+3+…n)=\(e^{\frac{n(n+1)x}{2}}\),
\(\int x^3 e^x e^2x e^3x……..e^nx dx\)
\(=x^3 \frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x}+3x^2 [\frac{2}{n(n+1)}]^2 e^{\frac{n(n+1)}{2}x}\)
\(+6x[\frac{2}{n(n+1)}]^3 e^{\frac{n(n+1)}{2}x}+6[\frac{2}{n(n+1)}]^4 e^{\frac{n(n+1)}{2}x}\)
=\(\frac{2}{n(n+1)} e^{\frac{n(n+1)}{2}x} \left [x^3+3x^2 [\frac{2}{n(n+1)}]^1+6x[\frac{2}{n(n+1)}]^2+6[\frac{2}{n(n+1)}]^3\right]\)

7. Find the area of a function f(x) = x2 + xCos(x) from x = 0 to a, where, a>0.
a) a22 + aSin(a) + Cos(a) – 1
b) a33 + aSin(a) + Cos(a)
c) a33 + aSin(a) + Cos(a) – 1
d) a33 + Cos(a) + Sin(a) – 1
View Answer

Answer: c
Explanation: Given, f(x) = x2 + xCos(x)
Hence, F(x) = ∫x2 + xCos(x) dx = x33 + xSin(x) + Cos(x)
Hence, area inside f(x) is,
F(a) – F(0) = a33 + aSin(a) + Cos(a) – 1.

8. Find the area ln(x)x from x = x = aeb to a.
a) b22
b) b2
c) b
d) 1
View Answer

Answer: a
Explanation:
Let, F(x)=\(\int \frac{ln⁡(x)}{x} dx\)
Let, z=ln⁡(x)=>dz=dx/x
=F(x)=∫ zdz=\(\frac{z^2}{2}=\frac{ln^2⁡(x)}{2}\)
Area inside curve from 4a to a is,
\(F(ae^b)-F(a)=\frac{ln^2⁡(ae^b )}{2}-\frac{ln^2⁡(a)}{2}=\frac{ln^2⁡(\frac{ae^b}{a})}{2}=\frac{ln^2⁡(e^b)}{2}=\frac{b}{2}\)

9. Find the area inside a function f(t) = \( \frac{t}{(t+3)(t+2)} dt\) from t = -1 to 0.
a) 4 ln⁡(3) – 5ln⁡(2)
b) 3 ln⁡(3)
c)3 ln⁡(3) – 4ln⁡(2)
d) 3 ln⁡(3) – 5 ln⁡(2)
View Answer

Answer: d
Explanation:
Now, F(t)=\(\int \frac{t}{(t+3)(t+2)} dt\)
F(t)=\(\int \frac{t}{(t+3)(t+2)} dt\)
=\(\int [\frac{3}{t+3}-\frac{2}{t+2}]dx\)
=\(\int [\frac{3}{t+3}]dx-\int [\frac{2}{t+2}]dx\)
=3 ln⁡(t+3)-2ln⁡(t+2)
Now area inside a function is, F(0) – F(-1),
hence, F(0)-F(-1)=3 ln⁡(3)-2 ln⁡(2)-3 ln⁡(2)+2 ln⁡(1)=3 ln⁡(3)-5ln⁡(2)
advertisement

10. Find the area inside integral f(x)=\(\frac{sec^4⁡(x)}{\sqrt{tan⁡(x)}}\) from x = 0 to π.
a) π
b) 0
c) 1
d) 2
View Answer

Answer: b
Explanation:
Given,F(x)=\(\int \frac{sec^4⁡ (x)}{\sqrt{tan⁡(x)}} dx\)
F(x)=\(\int \frac{sec^2⁡ (x) sec^2⁡ (x)}{\sqrt{tan⁡(x)}} dx\)
=\(\int \frac{1+t^2}{\sqrt{t}} dt\)
=\(\int [\frac{1}{\sqrt{t}}+t^{3/2}]dt\)
=\(2\sqrt{t}+\frac{2}{5} t^{5/2}\)
F(x)=\(\frac{2}{5} \sqrt{tan⁡(x)} [5+tan^2⁡(x)]\)
Now area inside a function f(x) from x=0 to π, is
F(π)-F(0)=0-0=0

11. Find the area inside function \(\frac{(2x^3+5x^2-4)}{x^2}\) from x = 1 to a.
a) a22 + 5a – 4ln(a)
b) a22 + 5a – 4ln(a) – 112
c) a22 + 4ln(a) – 112
d) a22 + 5a – 112
View Answer

Answer: b
Explanation: Add constant automatically
Given,
f(x) = \(\frac{(2x^3+5x^2-4)}{x^2}\),
Integrating it we get, F(x) = x22 + 5x – 4ln⁡(x)
Hence, area under, x = 1 to a, is
F(a) – F(1)=a22 + 5a – 4ln(a) – 1/2 – 5=a22 + 5a – 4ln(a) – 112

12. Find the value of ∫(x4 – 5x2 – 6x)4 4x3 – 10x – 6 dx.
a) \(\frac{(x^4-5x^2-6x)^4}{4}\)
b) \(\frac{(x^4-5x^2-6x)^5}{5}\)
c) \(\frac{(4x^3-10x-6)^5}{5}\)
d) \(\frac{(4x^3-10x-6)^4}{4}\)
View Answer

Answer: b
Explanation: Add constant automatically
Given, \(\int (x^4-5x^2-6x)^4 4x^3-10x-6 dx\)
putting, \(x^4-5x^2-6x=z\), we get, \(dz=4x^3-10x-6 dx\)
\(\int z^4 dz=\frac{z^5}{5}=\frac{(x^4-5x^2-6x)^5}{5}\)

13. Temperature of a rod is increased by moving x distance from origin and is given by equation T(x) = x2 + 2x, where x is the distance and T(x) is change of temperature w.r.t distance. If, at x = 0, temperature is 40 C, find temperature at x=10.
a) 473 C
b) 472 C
c) 474 C
d) 475 C
View Answer

Answer: a
Explanation: Temperature at distance x is,
T = ∫T(x) dx = ∫x2 + 2x dx = x33 + x2 + C
At x=0 given T = 40 C
C = T(x = 0) = 40 C
At x= 10,
T(x = 10) = 10003 + 100 + 43 = 473 C.

14. Find the value of \(\int \frac{1}{16x^2+16x+10}dx\).
a) 18 sin-1(x + 12)
b) 18 tan-1(x + 12)
c) 18 sec-1(x + 12)
d) 14 cos-1(x + 12)
View Answer

Answer: b
Explanation: Add constant automatically
Given, \(\int \frac{1}{16x^2+16x+10}dx=\frac{1}{2}\int \frac{1}{4x^2+4x+5}dx\)
=\(\int \frac{1}{8(x^2+x+\frac{5}{4}+\frac{1}{4}+\frac{1}{4})}dx=\int \frac{1}{8[(x+\frac{1}{2})^2+1^2]}dx=\frac{1}{8}tan^{-1}(x+\frac{1}{2})\)

Sanfoundry Global Education & Learning Series – Engineering Mathematics.

To practice all areas of Engineering Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 40s–60s and exploring new directions in your career, I also offer mentoring. Learn more here.