Differential and Integral Calculus Questions and Answers – Taylor’s Theorem Two Variables

This set of Differential and Integral Calculus Multiple Choice Questions & Answers (MCQs) focuses on “Taylor’s Theorem Two Variables”.

1. Among the following which is the correct expression for Taylor’s theorem in two variables for the function f (x, y) near (a, b) where h=x-a & k=y-b upto second degree?
a) \(f (a+ h, b+ k) = f (a, b) + \frac{x-a}{1!} f_x(a, b) + \frac{y-b}{1!} f_y(a, b) + \frac{(x-a)^2}{2!} f_{xx}(a, b)\\
+2 \frac{(x-a)(y-b)}{4!} f_{xy} (a,b) + \frac{(y-b)^2}{2!} f_{yy}(a, b)\)
b) \(f (a+ h, b+ k) = f (a, b) + \frac{x-a}{1!} f_x(a, b) + \frac{y-b}{1!} f_y(a, b) + \frac{(x-a)^2}{2!} f_{xx}(a, b)\\
+ \frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + \frac{(y-b)^2}{2!} f_{yy}(a, b)\)
c) \(f (a+ h, b+ k) = f (a, b) + \frac{x-a}{1!} f_x(a, b) + \frac{y-b}{1!} f_y(a, b) + \frac{(x-a)^2}{2!} f_{xx}(a, b)\\
+ \frac{(y-b)^2}{2!} f_{yy}(a, b)\)
d) \(f (a+ h, b+ k) = f (a, b) + \frac{x-a}{1!} f_x(a, b) + \frac{y-b}{1!} f_y(a, b) + \frac{(x-a)^2}{2!} f_{xx}(a, b)\\
+2 \frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + \frac{(y-b)^2}{2!} f_{yy}(a, b)\)
View Answer

Answer: d
Explanation: By definition
\(f (a+ h, b+ k) = f (a, b) + \frac{x-a}{1!} f_x(a, b) + \frac{y-b}{1!} f_y(a, b) + \frac{(x-a)^2}{2!} f_{xx}(a, b)\\
+2 \frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + \frac{(y-b)^2}{2!} f_{yy}(a, b)\)
here we can observe that second degree is of the form (p+q)2 similarly Taylor’s theorem is expanded to third degree which is of the form (p+q)3 & f (a+ h, b+ k) = f (x, y)
where\((f_x=\frac{∂f (x,y)}{∂x}, f_y=\frac{∂f (x,y)}{∂y}, f_{xx}=\frac{∂}{∂x}(\frac{∂f(x,y)}{∂x}), f_{yy}=\frac{∂}{∂y} (\frac{∂f (x,y)}{∂y}), \\
f_{xy}=\frac{∂}{∂x}(\frac{∂f (x,y)}{∂y})).\)

2. Given f (x,y)=ex cos⁡y, what is the value of the fifth term in Taylor’s series near (1,\(\frac{π}{4}\)) where it is expanded in increasing order of degree & by following algebraic identity rule?
a) \(\frac{-e(x-1)(y-\frac{π}{4})}{\sqrt{2}}\)
b) \(-\sqrt{2} e(x-1)(y-\frac{π}{4})\)
c) \(\frac{e(x-1)^2}{\sqrt{2}}\)
d) \(\frac{e(y-\frac{π}{4})^2}{\sqrt{2}}\)
View Answer

Answer: a
Explanation: Taylor’s series expansion is given by
\(f (a+ h, b+ k) = f (a, b) + \frac{x-a}{1!} f_x(a, b) + \frac{y-b}{1!} f_y(a, b) + \frac{(x-a)^2}{2!} f_{xx}(a, b)\\
+2 \frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + \frac{(y-b)^2}{2!} f_{yy}(a, b)\)
Thus fifth term is given by \(2 \frac{(x-a)(x-b)}{2!} f_{xy} (a,b)\)..(1) where a=1, b=π/4 & \(f_{xy}=\frac{∂}{∂x}(\frac{∂f(x,y)}{∂x}) = \frac{∂}{∂x}(\frac{∂e^x cos⁡y}{∂y}) =- e^x \,sin⁡y \) at (1, \(\frac{π}{4}), f_{xy}=\frac{-e}{\sqrt{2}}\) substituting in (1)
We get fifth term as \(2 \frac{(x-1)(x-π/4)}{2!} \frac{-e}{\sqrt{2}} = \frac{-e(x-1)(y-\frac{π}{4})}{\sqrt{2}}\).

3. Given f (x,y)=sin⁡xy, what is the value of the third degree first term in Taylor’s series near (1,-\(\frac{π}{2}\)) where it is expanded in increasing order of degree & by following algebraic identity rule?
a) \(\frac{π^3}{8}\)
b) \(\frac{π^3}{8} \frac{(x-1)(y+\frac{π}{2})}{3!}\)
c) 0
d) \(-\frac{π^3}{8} \frac{(x-1)^3}{3!}\)
View Answer

Answer: c
Explanation: Third degree first term in Taylor’s series is given by \(\frac{(x-a)^3 f_{xxx} (x,y)}{3!}\) Where a=1 \(b=-\frac{π}{2}, f_{xxx} (x,y)=\frac{∂^3 f(x,y)}{∂x^3} \,i.e\, \frac{∂^3 sin⁡xy}{∂x^3} = -y^3 cos⁡xy\)…… (partial differentiating f (x,y) w.r.t x only)
at \(a=1, b=-\frac{π}{2}, \frac{∂^3 sin⁡xy}{∂x^3} = -\frac{π^3 cos-\frac{⁡π}{2}}{8}=0\) hence third degree first term is given by \(-\frac{π^3}{8} \frac{(x-1)^3}{3!}.0 = 0.\)
advertisement

4. Taylor’s theorem is mainly used in expressing the function as sum with infinite terms.
a) True
b) False
View Answer

Answer: a
Explanation: Taylor’s theorem helps in expanding a function into infinite terms however, it can be applied to functions that can be expressed finitely.

5. Expansion of \(f (x,y) = tan^{-1} \frac{⁡y}{x}\) upto first degree containing (x+1) & (y-1) is __________
a) \(\frac{3π}{4} + \frac{(x+1)}{1!} \frac{-1}{2} + \frac{(y-1)}{1!} \frac{-1}{2} + \frac{(x+1)^2}{2!} \frac{-1}{2} + \frac{(y-1)^2}{2!} \frac{1}{2}\)
b) \(\frac{π}{4} + \frac{(x+1)}{1!} \frac{-1}{2} + \frac{(y-1)}{1!} \frac{-1}{2} + \frac{(x+1)^2}{2!} \frac{1}{4} + \frac{(y-1)^2}{2!} \frac{1}{4}\)
c) \(\frac{5π}{4} + \frac{(x+1)}{1!} \frac{-1}{2} + \frac{(y-1)}{1!} \frac{-1}{2} + \frac{(x+1)^2}{2!} \frac{-1}{4} + \frac{(y-1)^2}{2!} \frac{1}{4}\)
d) \(\frac{3π}{4} + \frac{(x+1)}{1!} \frac{-1}{2} + \frac{(y-1)}{1!} \frac{-1}{2} + \frac{(x+1)^2}{2!} \frac{-1}{4} + \frac{(y-1)^2}{2!} \frac{1}{4}\)
View Answer

Answer: a
Explanation: We can expand the given function according to Taylor’s theorem
\(f (a+ h, b+ k) = f (a, b) + \frac{x-a}{1!} f_x(a, b) + \frac{y-b}{1!} f_y(a, b) + \frac{(x-a)^2}{2!} f_{xx}(a, b)\\
+2 \frac{(x-a)(y-b)}{2!} f_{xy} (a,b) + \frac{(y-b)^2}{2!} f_{yy}(a, b)\)
Given a=-1 & b=1, f(-1,1)=tan-1⁡-1 = \(\frac{3π}{4}\)
\(f_x = \frac{-y}{x^2+y^2} \,at\, (-1,1) = \frac{-1}{2}\)
\(f_y = \frac{x}{x^2+y^2} \,at\, (-1,1) = \frac{-1}{2}\)
\(f_{xy} = \frac{(x^2+y^2)-2x^2}{(x^2+y^2)^2}\) at (-1,1)=0
\(f_{xx} = \frac{2yx}{(x^2+y^2)^2} \,at\, (-1,1)=\frac{-2}{4} = \frac{-1}{2}\)
\(f_{yy} = \frac{-2yx}{(x^2+y^2)^2} \,at\, (-1,1)=\frac{2}{4} = \frac{1}{2}\) thus the series is given by
\(\frac{3π}{4} + \frac{(x+1)}{1!} \frac{-1}{2} + \frac{(y-1)}{1!} \frac{-1}{2} + \frac{(x+1)^2}{2!} \frac{-1}{2} + \frac{(y-1)^2}{2!} \frac{1}{2}\).
Free 30-Day Python Certification Bootcamp is Live. Join Now!

Sanfoundry Global Education & Learning Series – Differential and Integral Calculus.

To practice all areas of Differential and Integral Calculus, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 40s–60s and exploring new directions in your career, I also offer mentoring. Learn more here.