This set of Engineering Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Leibniz Rule – 3”.
1. Leibniz rule gives the
a) Nth derivative of addition of two function
b) Nth derivative of division of two functions
c) Nth derivative of multiplication of two functions
d) Nth derivative of subtraction of two function
View Answer
Explanation: Leibniz rule is
\(\frac{d^n}{dx^n}(uv)\)
\(= n_{C_0} u_n v+ n_{C_1} u_{(n-1)} v_1+ n_{C_2} u_{n-2} v_2+…+ n_{C_r} u_{n-r} v_r+…+ n_{C_n} u_0 v_n\)
Hence Leibniz theorem gives nth derivative of multiplication of two functions u and v.
.
2. Leibniz theorem is applicable if n is a
a) Rational Number
b) Negative Integer
c) Positive Integer
d) Decimal Number
View Answer
Explanation: Leibniz rule is
\(\frac{d^n}{dx^n}(uv)\)
\(= n_{C_0} u_n v+ n_{C_1} u_{n-1} v_1+ n_{C_2} u_{n-2} v_2+…+ n_{C_r} u_{n-r} v_r+…+ n_{C_n} u_0 v_n\)
For all n > 0, i.e n should be positive
Hence Leibniz theorem gives nth derivative of multiplication of two functions u and v if n is a positive integer.
3. If nth derivative of xy3 + x2y2 + x3y0 = 0 then order of its nth differential equation is,
a) n
b) n+1
c) n+2
d) n+3
View Answer
Explanation:
1. If we differentiate this equation n times then terms comes in nth order differential equation is yn+3, yn+2, yn+1, yn, yn-1, yn-2, yn-3. Hence order of differential equation becomes n+3.
2. By Leibniz rule differentiating it n times, we get
Xyn+3 + nyn+2 + x2yn+2 + 2nxyn+1 + 2n(n-1)yn + x3yn + 3nx2yn-1 + 6n(n-1)xyn-2 + 6n(n-1)(n-2)yn-3 = 0
Hence order of differential equation becomes n+3.
4. Find nth derivative of x2y2 + xy1 + y = 0
a) x2yn+2 + (2n+1)xyn+1 + (n2+1)yn = 0
b) x2yn+2 + nxyn+1 + (n2+1)yn = 0
c) x2yn+2 + (2n+1)xyn+1 + n2yn = 0
d) x2yn+2 + 2nxyn+1 + n2yn = 0
View Answer
Explanation: x2y2 + xy1 + y = 0
By Leibniz theorem
x2yn+2 + n(2x)(yn+1) + n(n-1)(2)(yn) + xyn+1 + nyn + yn= 0
x2yn+2 + xyn+1(2n+1) + yn(n2+1) = 0.
5. The nth derivative of x2y2 + (1-x2)y1 + xy = 0 is,
a) x2yn+2 + yn(2n2-2n-2nx+x) – yn-1(2n2-3n)=0
b) x2yn+2 + yn+1(2nx-x2) + yn(2n2-2n-2nx+x) – yn-1(2n2-3n)=0
c) x2yn+2 + yn+1(2nx+1-x2) + yn(2n2-2n-2nx+x)-yn – 1(2n2-3n)=0
d) x2yn+2 + yn+1(2nx+1-x2) + xyn2n2-yn – 1(2n2-3n)=0
View Answer
Explanation: x2y2 + (1-x2)y1 + xy = 0
Differentiating n times by Leibniz Rule
x2yn+2 + 2nxyn+1 + 2n(n-1)yn + (1-x2)yn+1 – 2nxyn – 2n(n-1)yn-1 + xyn + nyn-1 = 0
x2yn+2 + yn+1(2nx+1-x2) + yn(2n2-2n-2nx+x) – yn-1(2n2-3n)=0.
6. Find nth derivative of xnSin(nx)
a) \(n!Sin(nx) + n_{C_1} n_{P_{n-1}}x^{n-1}nCos(nx) – n_{C_2}n_{P_{n-2}}x^{n-2}n^2Sin(nx)\)
\(-n_{C_3}n_{P_{n-3} }x^{n-3}n^3Sin(nx)+n_{C_3}n_{P_{n-4}}x^{n-4}n^4Cos(nx)+..+x^nn^nSin(nx+nπ/2)\)
b) \(Sin(nx) + n_{C_1} n_{P_{n-1}}x^{n-1}nCos(nx) – n_{C_2}n_{P_{n-2}}x^{n-2}n^2Sin(nx)\)
\(-n_{C_3}n_{P_{n-3}}x^{n-3}n^3Sin(nx)+n_{C_3}n_{P_{n-4}}x^{n-4}n^4Cos(nx)+..+n!x^nn^nSin(nx+nπ/2)\)
c) \(nSin(nx) + n_{C_1} n_{P_{n-1}}x^{n-1}nCos(nx) – n_{C_2}n_{P_{n-2}}x^{n-2}n^2Sin(nx)\)
\(-n_{C_3}n_{P_{n-3}}x^{n-3}n^3Sin(nx)+n_{C_3}n_{P_{n-4}}x^{n-4}n^4Cos(nx)+..+nx^nn^nSin(nx+nπ/2)\)
d) \((n-1)!Sin(nx) + n_{C_1} n_{P_{n-1}}x^{n-1}nCos(nx) – n_{C_2}n_{P_{n-2}}x^{n-2}n^2Sin(nx)\)
\(-n_{C_3}n_{P_{n-3}}x^{n-3}n^3Sin(nx)+n_{C_3}n_{P_{n-4}}x^{n-4}n^4Cos(nx)+..+x^nn^{n-1}Sin(nx+nπ/2)\)
View Answer
Explanation: Y = xnSin(nx)
By Leibniz Rule , put u = xn and v = Sin(nx), we get
\(n!Sin(nx) + n_{C_1} n_(P_{n-1})x^{n-1}nCos(nx) – n_{C_2}n_(P_{n-2})x^{n-2}n^2Sin(nx)\)
\(-n_{C_3}n_{P_{n-3}}x^{n-3}n^3Sin(nx)+n_{C_3}n_{P_{n-4}}x^{n-4}n^4Cos(nx)+..+x^nn^nSin(nx+nπ/2)\)
7. If y(x) = tan-1x then
a) (yn+1)(0) = (n-1)(yn-1)0
b) (yn+1)(0) = n(n-1)(yn-1)0
c) (yn+1)(0) = -(n-1)(yn-1)0
d) (yn+1)(0) = -n(n-1)(yn-1)0
View Answer
Explanation: Y = tan-1x
Y1 = 1/(1+x2)
(1+x2)y1 = 1
By Leibniz Rule,
(1+x2)yn+1 + 2nxyn + n(n-1)yn-1 = 0
Put x=0, gives
→ (yn+1)(0) = -n(n-1)(yn-1)(0).
8. If y = sin-1x, then
a) (1-x2)yn+2 – xyn+1(2n-1) = nyn(2n-1)
b) x2yn+2 – xyn+1(2n-1) = nyn(2n-1)
c) (1-x2)yn+2 – 2nxyn+1 = nyn(2n-1)
d) (1-x2)yn+2 – xyn+1(2n-1) +nyn(2n-1)=0
View Answer
Explanation: Y = sin-1x
Differentiating it
Y1 = \(\frac{1}{\sqrt{1-x^2}}\)
(1-x2)(y1)2= 1
Again Differentiating we get
(1-x2)2y1y2 – 2x(y1)2 = 0
(1-x2)y2 = xy1
By Leibniz Rule, Diff it n times,
(1-x2)yn+2 – 2xnyn+1 – 2n(n-1)yn = xyn+1 + nyn
(1-x2) yn+2 – xyn+1(2n-1) = nyn(2(n-1)+1)
(1-x2) yn+2 – xyn+1(2n-1) = nyn(2n-1).
9. If y = cos-1x, then
a) (yn+2)(0) = -n(2n-1) yn(0)
b) (yn+2)(0) = n(2n-1) yn(0)
c) (yn+2)(0) = n(n-2) yn(0)
d) (yn+2)(0) = n(n-3) yn(0)
View Answer
Explanation: y = cos-1x
Differentiating it
Y1 = \(\frac{1}{\sqrt{1-x^2}}\)
(1-x2)(y1)2= 1
Again Differentiating we get
(1-x2)2y1y2 – 2x(y1)2 = 0
(1-x2)y2 = xy1
By Leibniz Rule, Diff it n times,
(1-x2)yn+2 – 2xnyn+1 – 2n(n-1)yn = xyn+1 + nyn
(1-x2) yn+2 – xyn+1(2n-1) = nyn(2(n-1)+1)
(1-x2) yn+2 – xyn+1(2n-1) = nyn(2n-1)
At x=0, we get
(yn+2)(0) = n(2n-1) yn(0).
Sanfoundry Global Education & Learning Series – Engineering Mathematics.
To practice all areas of Engineering Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Check Engineering Mathematics Books
- Apply for 1st Year Engineering Internship
- Practice Probability and Statistics MCQ
- Practice Numerical Methods MCQ