# Linear Algebra Questions and Answers – Surface Integrals

«
»

This set of Linear Algebra Multiple Choice Questions & Answers (MCQs) focuses on “Surface Integrals”.

1. Evaluate ∫xy dxdy over the positive quadrant of the circle x2+y2=a2.
a) $$\frac{a^4}{8}$$
b) $$\frac{a^4}{4}$$
c) $$\frac{a^2}{8}$$
d) $$\frac{a^2}{4}$$

Explanation: In the positive quadrant of the circle,
$$y: 0 \rightarrow a$$
$$x: o \rightarrow \sqrt{a^2-x^2}$$
Therefore the integral is
$$\displaystyle\int_0^a \int_0^{\sqrt{a^2-x^2}}xydxdy$$
$$= \int_0^a \frac{yx^2}{2} dy$$ (from 0 to $$\sqrt{a^2-x^2})$$
$$= \frac{1}{2} \int_0^a y(a^2-y^2) dy= \frac{a^4}{8}.$$

2. Evaluate ∫∫xy dxdy over the region bounded by x axis, ordinate x=2a and the curve x2=4ay.
a) $$\frac{a^4}{3}$$
b) $$\frac{a^4}{6}$$
c) $$\frac{a^3}{3}$$
d) $$\frac{a^2}{6}$$

Explanation: Both the curves meet at (2a,a).
Therefore,
$$x:0 \rightarrow 2a$$
$$y: 0 \rightarrow \frac{x^2}{4a}$$
$$\int_0^2 a \int_0^{\frac{x^2}{4}}a xydxdy$$
$$= \int_0^2 a \frac{xy^2}{2} dx$$ (from 0 to $$\frac{x^2}{4a})$$
$$= \frac{1}{2} \int_0^{2a} \frac{x^5}{(16a^2 )} dx$$
$$= \frac{a^4}{3}.$$

3. Evaluate ∫∫x2+y2 dxdy in the positive quadrant for which x+y<=1.
a) $$\frac{1}{2}$$
b) $$\frac{1}{3}$$
c) $$\frac{1}{6}$$
d) $$\frac{1}{12}$$

Explanation: In this
x: 0 to 1
y:0 to 1-x
$$\int_0^1 \int_0^{1-x} x^2+y^2 dxdy$$
$$= \int_0^1 x^2 y+ \frac{y^3}{3} dx$$ (from 0 to 1-x)
$$= \int_0^1 x^2 (1-x)+ \frac{(1-x)^3}{3} dx$$
$$= \frac{1}{6}.$$

4. Evaluate $$\int_0^∞ \int_0^{π/2} e^{-r^{2}} rdθdr$$.
a) $$\pi$$
b) $$\frac{\pi}{2}$$
c) $$\frac{\pi}{4}$$
d) $$\frac{\pi}{8}$$

Explanation: The integral is in polar coordinates.
Substitute r2 as t
$$\int_0^∞ \int_0^{π/2} e^{-t} dθ \frac{dt}{2}$$
$$= \frac{1}{2} \int_0^{π/2}Γ(1)dθ$$
$$= \frac{\pi}{4}.$$

5. Evaluate ∫∫rsinθdrdθ over the cardiod r = a(1+cosθ) above the initial line.
a) $$4 \frac{a^2}{3}$$
b) $$\frac{a^2}{3}$$
c) $$8 \frac{a^2}{3}$$
d) $$4 \frac{a^2}{6}$$

Explanation: θ: 0 to π
r: 0 to a(1+cosθ)
$$\int_0^π \int_0^{a(1+cosθ)} rsinθdrdθ$$
$$= \int_0^π \frac{r^2}{2} sinθdθ$$ (from 0 to a(1+cosθ))
$$= \int_0^π \frac{a^2}{2} (1+cosθ)^2 dθ$$
$$= 4 \frac{a^2}{3}.$$

6. Evaluate $$\int_0^∞ \int_0^∞ e^{-(x^2+y^2 )} dxdy$$ by changing into polar coordinates.
a) $$\pi$$
b) $$\frac{\pi}{2}$$
c) $$\frac{\pi}{4}$$
d) $$\frac{\pi}{8}$$

Explanation: $$\int_0^∞ \int_0^∞ e^{-(x^2+y^2 )} dxdy$$
$$= \int_0^{π/2} \int_0^∞ e^{-(r^2 )} drdθ$$
Substitute $$r^2$$ as t
$$= \frac{1}{2} \int_0^{π/2} \int_0^∞ e^{-t} dtdθ$$
$$= \frac{1}{2} \int_0^{π/2}Γ(1)dθ$$
$$= \frac{\pi}{4}.$$

7. Evaluate the following integral by transforming into polar coordinates.
$$\displaystyle\int_0^a \int_0^\sqrt{a^2-x^2} y\sqrt{x^2-y^2} dxdy$$
a) $$\frac{a^4}{2}$$
b) $$\frac{a^4}{3}$$
c) $$\frac{a^4}{4}$$
d) $$\frac{a^4}{5}$$

Explanation: Subtitute x as rcosθ and y as rsinθ.
Therfore θ : 0 to Π/2
and r : 0 to a
$$\int_0^a \int_0^{π/2} rsinθrrdrdθ$$
$$= [\int_0^a r^3 dr][\int_0^{π/2}sinθdθ]$$
$$= \frac{a^4}{4}$$.

8. Evaluate $$\int_0^∞ \int_x^∞ \frac{e^{-y}}{y} dydx$$ by changing the order of integration.
a) 0
b) 1
c) 2
d) 1/2

Explanation: In the question, y: x to infnity
x: 0 to infinity
Now changing the orrder of integration:
y=x
y tends to infinity
y: 0 to infinity
x: 0 to y
$$\int_0^∞ \int_0^y \frac{e^{-y}}{y} dydx$$
$$= \int_0^∞ \frac{e^{-y}}{y} ydy$$
= -(0-1)
= 1.

9. Calculate the area enclosed by parabolas x2 = y and y2 = x.
a) $$\frac{1}{2}$$
b) $$\frac{1}{3}$$
c) $$\frac{1}{4}$$
d) $$\frac{1}{6}$$

Explanation: x: 0 to 1
$$y: x^2 \, to \, x^{1/2}$$
$$\int_0^1 \int_{x^2}^{\sqrt{x}}dydx$$
$$= \int_0^1 \sqrt{x}-x^2 dx$$
$$= \frac{2}{3} – \frac{1}{3}$$
$$= \frac{1}{3}.$$

10. What is the area of a cardiod y = a(1+cosθ).
a) $$\frac{3πa^2}{2}$$
b) $$3πa^2$$
c) $$\frac{3πa^2}{4}$$
d) $$\frac{3πa^2}{8}$$

Explanation: θ : 0 to π
r : 0 to a(1+cosθ)
$$\frac{Area}{2} = \int_0^π \int_0^{a(1+cosθ)}rdrdθ$$
$$= \frac{3πa^2}{4}$$
Total area = $$2* \frac{3πa^2}{4}$$
$$\frac{3πa^2}{2}$$.

Sanfoundry Global Education & Learning Series – Linear Algebra.

To practice all areas of Linear Algebra, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs! 