Mathematics Questions and Answers – Derivatives of Functions in Parametric Forms

«
»

This set of Mathematics Problems for Class 12 focuses on “Derivatives of Functions in Parametric Forms”.

1. Find \(\frac{dy}{dx}\), if x=3a2 cos2⁡θ and y=4a sin2⁡θ.
a) \(\frac{3}{4a}\)
b) –\(\frac{4}{3a}\)
c) \(\frac{4}{3a}\)
d) –\(\frac{3}{4a}\)
View Answer

Answer: b
Explanation: Given that, x=3a2 cos2⁡θ and y=4a sin2⁡θ
Then, \(\frac{dx}{dθ}\)=3a2.(2 cos⁡θ)(-sin⁡θ)=-3a2 sin⁡2θ
\(\frac{dy}{dθ}\)=4a(2 sin⁡θ)(cos⁡θ)=4a sin⁡2θ
\(\frac{dy}{dx}\)=\(\frac{dy}{dθ}×\frac{dθ}{dx}=-\frac{4a \,sin⁡2θ}{3a^2 \,sin⁡2θ}=-\frac{4}{3a}\)
advertisement

2. Find \(\frac{dy}{dx}\), if x=9t4 and y=t.
a) \(\frac{1}{36t^3}\)
b) \(\frac{1}{36t^2}\)
c) \(\frac{-1}{36t^3}\)
d) \(\frac{1}{32t^3}\)
View Answer

Answer: a
Explanation: Given that, x=9t4 and y=t
\(\frac{dx}{dt}\)=36t3
\(\frac{dy}{dt}\)=1
∴\(\frac{dy}{dx}\)=\(\frac{dy}{dt}.\frac{dt}{dx}=\frac{1}{36t^3}\)

3. Find \(\frac{dy}{dx}\), if x=sin⁡3t and y=t2 tan⁡2t.
a) \(\frac{3t(tan⁡2t+tsec^2 2t)}{4 cos⁡3t}\)
b) \(\frac{(tan⁡2t+tsec^2 2t)}{3 cos⁡3t}\)
c) \(\frac{-2t(tan⁡2t+tsec^2 2t)}{3 cos⁡3t}\)
d) \(\frac{2t(tan⁡2t+tsec^2 2t)}{3 cos⁡3t}\)
View Answer

Answer: d
Explanation: Given that, x=sin⁡3t and y=t2 tan⁡2t
\(\frac{dx}{dt}\)=3 cos⁡3t
By using u.v rule, we get
\(\frac{dy}{dt}\)=\(\frac{d}{dx} \,(t^2) \,tan⁡2t+\frac{d}{dx} \,(tan⁡2t)\) t2
\(\frac{dy}{dt}\)=2t tan⁡2t+2t2 sec2⁡2t
\(\frac{dy}{dx}\)=\(\frac{dy}{dt}.\frac{dt}{dx}=\frac{(2t \,tan⁡2t+2t^2 \,sec^2⁡2t)}{3 \,cos⁡3t}\)
∴\(\frac{dy}{dx}=\frac{2t(tan⁡2t+tsec^2 \,2t)}{3 \,cos⁡3t}\)
advertisement
advertisement

4. Find \(\frac{dy}{dx}\), if x=log⁡t2 and y=\(\frac{1}{t}\).
a) \(\frac{1}{2t}\)
b) –\(\frac{t}{2}\)
c) –\(\frac{1}{2t}\)
d) \(\frac{t}{2}\)
View Answer

Answer: c
Explanation: Given that, x=log⁡t2 and y=\(\frac{1}{t}\)
\(\frac{dx}{dt}\)=\(\frac{1}{t^2}.2t=\frac{2}{t}\)
\(\frac{dy}{dt}\)=-\(\frac{1}{t^2}\)
∴\(\frac{dy}{dx}\)=\(\frac{dy}{dt}.\frac{dt}{dx}=-\frac{1}{t^2}.\frac{t}{2}=-\frac{1}{2t}\)

5. Find \(\frac{dy}{dx}\), if x=6 sin-1⁡2t and y=\(\frac{1}{\sqrt{1-4t^2}}\).
a) \(\frac{t}{1-4t^2}\)
b) –\(\frac{1}{3(1-4t^2)}\)
c) –\(\frac{t}{3(1-4t^2)}\)
d) \(\frac{1}{3(1-4t^2)}\)
View Answer

Answer: d
Explanation: Given that, x=6 sin-1⁡2t and y=\(\frac{1}{\sqrt{1-4t^2}}\)
\(\frac{dx}{dt}\)=\(\frac{6}{\sqrt{1-4t^2}}.2=\frac{12}{\sqrt{1-4t^2}}\)
\(\frac{dy}{dt}\)=-\(\frac{1}{2(1-4t^2)^{3/2}}.(-8t)=\frac{4t}{(1-4t^2)^{3/2}}\)
\(\frac{dy}{dx}\)=\(\frac{dy}{dt}.\frac{dt}{dx}=\frac{4t}{(1-4t^2)^{3/2}}.\frac{\sqrt{1-4t^2}}{12}\)
\(\frac{dy}{dx}\)=\(\frac{t}{3(1-4t^2)}\)
advertisement

6. Find \(\frac{dy}{dx}\), if x=2t2 and y=6t6.
a) -9t4
b) 9t4
c) t4
d) 9t3
View Answer

Answer: b
Explanation: Given that, x=2t2 and y=6t6
\(\frac{dx}{dt}\)=4t
\(\frac{dy}{dt}\)=36t5
\(\frac{dy}{dx}\)=\(\frac{dy}{dt}.\frac{dt}{dx}=\frac{36t^5}{4t}=9t^4\)

7. Find \(\frac{dy}{dx}\), if x=2et and y=log⁡t
a) \(\frac{1}{2te^t}\)
b) –\(\frac{1}{2te^t}\)
c) \(\frac{1}{te^t}\)
d) \(\frac{1}{e^t}\)
View Answer

Answer: a
Explanation: Given that, x=2et and y=log⁡t
\(\frac{dx}{dt}\)=2et
\(\frac{dy}{dt}\)=1/t
∴\(\frac{dy}{dx}\)=\(\frac{dy}{dt}.\frac{dt}{dx}=\frac{1}{t}.\frac{1}{2e^t}=\frac{1}{2te^t}\).
advertisement

8. Find \(\frac{dy}{dx}\), if x=tan⁡2θ and y=cos⁡2θ+sin2⁡θ.
a) –\(\frac{tan^2⁡2θ \,sin⁡2θ}{2}\)
b) \(\frac{3 tan^2⁡2θ sin⁡2θ}{2}\)
c) 0
d) \(\frac{tan^2⁡2θ sin⁡2θ}{2}\)
View Answer

Answer: a
Explanation: Given that, x=tan⁡2θ and y=cos⁡2θ+sin2⁡θ
\(\frac{dx}{dθ}\)=2 sec2⁡2θ
\(\frac{dy}{dθ}\)=-2 sin⁡2θ+2 sin⁡θ cos⁡θ=-2 sin⁡2θ+sin⁡2θ=-sin⁡2θ
∴\(\frac{dy}{dx}\)=\(\frac{dy}{dθ}.\frac{dθ}{dx}=-\frac{sin⁡2θ}{2 sec^2⁡2θ}=-\frac{sin⁡2θ}{2 cos^2⁡2θ}.sin^2⁡2θ=-\frac{tan^2⁡2θ sin⁡2θ}{2}\)

9. Find \(\frac{dy}{dx}\), if x=log⁡(tan⁡t) and y=log⁡(sin⁡t).
a) 2 cos2⁡t
b) cos2⁡2t
c) cos2t
d) -cos2t
View Answer

Answer: c
Explanation: Given that, x=log⁡(tan⁡t) and y=log⁡(sin⁡t)
\(\frac{dx}{dt}\)=\(\frac{1}{tan⁡t}.sec^2⁡t=cot⁡t sec^2⁡t\)
\(\frac{dy}{dt}=\frac{1}{sin⁡ \,t}.cos⁡ \,t=cot⁡ \,t\)
∴\(\frac{dy}{dx}\)=\(\frac{dy}{dt}.\frac{dt}{dx}=\frac{cot⁡\,t}{cot\,⁡t sec^2⁡t}=\frac{1}{sec^2⁡t}=cos^2⁡t\).
advertisement

10. Find \(\frac{dy}{dx}\), if x=a2 t2 cotθ and y=at sin⁡θ.
a) \(\frac{tan⁡θ \,sin⁡θ}{at}\)
b) \(\frac{tan⁡θ \,sin⁡θ}{2at}\)
c) \(\frac{tan⁡θ \,sin⁡θ}{2t}\)
d) \(\frac{tan⁡θ \,sin⁡θ}{2a}\)
View Answer

Answer: b
Explanation: Given that, x=a2 t2 cotθ and y=at sin⁡θ
\(\frac{dx}{dt}\)=2ta2 cot⁡θ
\(\frac{dy}{dt}\)=asin⁡θ
\(\frac{dy}{dx}\)=\(\frac{asin⁡θ}{2ta^2 \,cot⁡θ}=\frac{a sin⁡θ}{2a^2 t cos⁡θ}.sin⁡θ=\frac{tan⁡θ \,sin⁡θ}{2at}\)

Sanfoundry Global Education & Learning Series – Mathematics – Class 12.

To practice Mathematics Problems for Class 12, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

advertisement
advertisement
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn | Youtube | Instagram | Facebook | Twitter