Matrix Inversion Questions and Answers – Crout’s Method

This set of Numerical Methods Multiple Choice Questions & Answers (MCQs) focuses on “Crout’s Method”.

1. Solve the following equations using Crout’s Method to find the value of x.

x+y+z=7
x+2y+3z=16
x+3y+4z=22

a) 3
b) 7
c) 0
d) 1
View Answer

Answer: d
Explanation: From the above question, we get the matrix equation as –
\(\begin{bmatrix}1&1&1\\1&2&3\\1&3&4\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}7\\16\\22\end{bmatrix}\)
Let A=L*U
Here L is the lower triangular matrix
L=\(\begin{bmatrix}a&0&0\\b&c&0\\d&e&f\end{bmatrix}\)
U is the lower triangular matrix
U=\(\begin{bmatrix}1&g&h\\0&1&I\\0&0&1\end{bmatrix}\)
A=\(\begin{bmatrix}a&ag&ah\\b&bg+c&bh+cI\\d&dg+e&dh+eI+f\end{bmatrix}\)
A=LU
\(\begin{bmatrix}1&1&1\\1&2&3\\1&3&4\end{bmatrix}\)=\(\begin{bmatrix}a&ag&ah\\b&bg+c&bh+cI\\d&dg+e&dh+eI+f\end{bmatrix}\)
From this substitutions and comparisons, we get the following values,
a=1
b=1
c=1
d=1
e=2
f=-1
g=1
h=1
I=2
Thus from the above values,
L=\(\begin{bmatrix}1&0&0\\1&1&0\\1&2&-1\end{bmatrix}\) and U=\(\begin{bmatrix}1&1&1\\0&1&2\\0&0&1\end{bmatrix}\)
Since AX=B i.e. LUX=B
Assume V=UX
V = \(\begin{bmatrix}v1\\v2\\v3\end{bmatrix}\)
We can say that LV=B
\(\begin{bmatrix}1&0&0\\1&1&0\\1&2&-1\end{bmatrix} \begin{bmatrix}v1\\v2\\v3\end{bmatrix} = \begin{bmatrix}7\\16\\22\end{bmatrix}\)
From this we get,
v1=7
v2=9
v3=3
UX=V
\(\begin{bmatrix}1&1&1\\0&1&2\\0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}7\\9\\3\end{bmatrix}\)
\(\begin{bmatrix}x+y+z\\y+2z\\z\end{bmatrix} = \begin{bmatrix}7\\9\\3\end{bmatrix}\)
Hence, x=1, y=3, z=3
Thus, the value of x is 1.

2. Solve the following equations using Crout’s Method to find the value of z.

x-2y+3z=6
x-y+2z=9
3x+2y-z=16
advertisement

a) 13
b) 7
c) 10
d) -12
View Answer

Answer: a
Explanation: From the above question, we get the matrix equation as-
\(\begin{bmatrix}1&-2&3\\1&-1&2\\3&2&-1\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}6\\9\\16\end{bmatrix}\)
Let A=L*U
Here L is the lower triangular matrix
L=\(\begin{bmatrix}a&0&0\\b&c&0\\d&e&f\end{bmatrix}\)
U is the lower triangular matrix
U=\(\begin{bmatrix}1&g&h\\0&1&I\\0&0&1\end{bmatrix}\)
A=\(\begin{bmatrix}a&ag&ah\\b&bg+c&bh+cI\\d&dg+e&dh+eI+f\end{bmatrix}\)
A=LU
\(\begin{bmatrix}1&-2&3\\1&-1&2\\3&2&-1\end{bmatrix}\)=\(\begin{bmatrix}a&ag&ah\\b&bg+c&bh+cI\\d&dg+e&dh+eI+f\end{bmatrix}\)
From this substitutions and comparisons, we get the following values,
a=1
b=1
c=1
d=3
e=8
f=-2
g=-2
h=3
I=-1
Thus from the above values,
L=\(\begin{bmatrix}1&0&0\\1&1&0\\3&8&-2\end{bmatrix}\) and U=\(\begin{bmatrix}1&-2&3\\0&1&-1\\0&0&1\end{bmatrix}\)
Since AX=B i.e. LUX=B
Assume V=UX
V = \(\begin{bmatrix}v1\\v2\\v3\end{bmatrix}\)
We can say that LV=B
\(\begin{bmatrix}1&0&0\\1&1&0\\3&8&-2\end{bmatrix} \begin{bmatrix}v1\\v2\\v3\end{bmatrix} = \begin{bmatrix}6\\9\\16\end{bmatrix}\)
From this we get,
v1=6
v2=3
v3=13
UX=V
\(\begin{bmatrix}1&-2&3\\0&1&-1\\0&0&1\end{bmatrix} \begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}6\\3\\13\end{bmatrix}\)

\(\begin{bmatrix}x-2y+3z\\y-z\\z\end{bmatrix} = \begin{bmatrix}6\\3\\13\end{bmatrix}\)
Hence, x=-1, y=16, z=13
Thus, the value of z is 13.

Sanfoundry Global Education & Learning Series – Numerical Methods.

Free 30-Day C++ Certification Bootcamp is Live. Join Now!

To practice all areas of Numerical Methods, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 40s–60s and exploring new directions in your career, I also offer mentoring. Learn more here.