This set of Class 12 Maths Chapter 7 Multiple Choice Questions & Answers (MCQs) focuses on “Fundamental Theorem of Calculus-2”.
1. Evaluate the integral \(\int_1^5x^2 \,dx\).
a) \(\frac{125}{3}\)
b) \(\frac{124}{3}\)
c) 124
d) –\(\frac{124}{3}\)
View Answer
Explanation: Let I=\(\int_1^5x^2 \,dx\)
F(x)=\(\int x^2 \,dx\)
=\(\frac{x^3}{3}\)
By using the fundamental theorem of calculus, we get
I=F(5)-F(1)
=\(\frac{5^3}{3}-\frac{1^3}{3}=\frac{125-1}{3}=\frac{124}{3}\)
2. Find \(\int_{π/4}^{π/2}7 \,cosx \,dx\).
a) 7(1-\(\frac{1}{\sqrt{2}}\))
b) -7(1-\(\frac{1}{\sqrt{2}}\))
c) 7(1+\(\frac{1}{\sqrt{2}}\))
d) 7(\(\sqrt{2}-\frac{1}{\sqrt{2}}\))
View Answer
Explanation: Let \(I=\int_{π/4}^{π/2}7 \,cosx \,dx\)
F(x)=∫ 7 cosx dx
=7(sinx)
Applying the limits by using the second fundamental theorem of calculus, we get
\(I=F(\frac{π}{2})-F(\frac{π}{4})=7(sin\frac{π}{2}-sin \frac{π}{4})=7(1-\frac{1}{\sqrt{2}})\)
3. The value of the integral \(\int_0^1(x+3) \,e^{3x} \,dx\).
a) \(\frac{8e^3}{9}\)
b) \(\frac{11}{9} e^3-8\)
c) \(\frac{e^{3x}}{9}(x+8)\)
d) \(\frac{11}{9} e^3-\frac{8}{9}\)
View Answer
Explanation: Let \(I=\int_0^1(x+3) \,e^{3x} \,dx\)
F(x)=\(\int (x+3) \,e^{3x} \,dx\)
By using the formula \(\int \,u.v \,dx=u\int \,v dx-\int \,u'(\int \,v \,dx)\), we get
F(x)=(x+3) \(\int e^{3x} \,dx-\int \,(x+3)’\int \,e^{3x} \,dx\)
=\(\frac{(x+3) \,e^{3x}}{3}-\int \frac{e^{3x}}{3} dx\)
=\(\frac{(x+3) e^{3x}}{3}-\frac{e^{3x}}{9}\)
=\(\frac{e^{3x}}{3} (x+3-\frac{1}{3})=\frac{e^{3x}}{9}(3x+8)\)
Applying the limits, we get
I=F(1)-F(0)
=\(\frac{e^{3(1)}}{9} (3+8)-\frac{e^{3(0)}}{9}(0+8)\)
=\(\frac{11}{9} e^3-\frac{8}{9}\).
4. Find \(\int_0^π(1-sin3x)dx\).
a) \(\frac{3π-2}{4}\)
b) 3π-1
c) \(\frac{3π-2}{3}\)
d) π-\(\frac{1}{3}\)
View Answer
Explanation: Let \(I=\int_0^π(1-sin3x)dx\)
F(x)=∫ 1-sin3x dx
=x+\(\frac{cos3x}{3}\)
Applying the limits by using the fundamental theorem of calculus, we get
I=F(π)-F(0)
=\(π+\frac{cos3π}{3}-0-\frac{cos0}{3}\)
=\(π-\frac{1}{3}-\frac{1}{3}=π-\frac{2}{3}=\frac{3π-2}{3}\).
5. Evaluate the integral \(\int_1^{\sqrt{3}} \frac{3}{1+x^2}\).
a) \(\frac{π}{2}\)
b) \(\frac{π}{4}\)
c) \(\frac{π}{3}\)
d) \(\frac{π}{6}\)
View Answer
Explanation: Let \(I=\int_1^{√3} \frac{3}{1+x^2}\)
F(x)=\(\int \frac{3}{1+x^2}dx\)
=3\(\int \frac{1}{1+x^2} \,dx\)
=3 tan-1x
Applying the limits, we get
I=F(\(\sqrt{3}\))-F(1)
=3 tan-1\(\sqrt{3}\)-3 tan-11
\(3(\frac{π}{3})-\frac{3π}{4}=\frac{4π-3π}{4}=\frac{π}{4}\).
6. Find \(\int_3^45x^3 \,dx\).
a) –\(\frac{185}{4}\)
b) –\(\frac{185}{3}\)
c) \(\frac{185}{2}\)
d) \(\frac{185}{4}\)
View Answer
Explanation: Let \(I=\int_3^45x^3 \,dx\)
F(x)=∫ 5x3 dx
=\(\frac{5x^4}{4}\)
Applying the limits by using the fundamental theorem of calculus, we get
I=F(4)-F(3)
=\(\frac{5(4)^3}{4}-\frac{5(3)^3}{4}=\frac{5}{4}(4^3-3^3)\)
=\(\frac{5}{4} (64-27)=\frac{5}{4} (37)=\frac{185}{4}\)
7. Evaluate the definite integral \(\int_0^1 sin^2x \,dx\).
a) –\(\frac{π}{2}\)
b) π
c) \(\frac{π}{4}\)
d) \(\frac{π}{6}\)
View Answer
Explanation: Let \(I=\int_0^{π/2}sin^{2}x \,dx\)
F(x)=\(\int sin^2x \,dx\)
=\(\int \frac{(1-cos2x)}{2} \,dx\)
=\(\frac{1}{2} (x-\frac{sin2x}{2})\)
Applying the limits, we get
\(I=F(\frac{π}{2})-F(0)=\frac{1}{2} (\frac{π}{2}-\frac{sinπ}{2})-\frac{1}{2} (0-\frac{sin0}{2})\)
=\(\frac{1}{4} (π-0)-0=\frac{π}{4}\).
8. Find \(\int_1^2\sqrt{x}-3x \,dx\).
a) \(\frac{8\sqrt{2}-31}{6}\)
b) \(8\sqrt{2}-31\)
c) \(\frac{\sqrt{2}-31}{3}\)
d) \(\frac{8\sqrt{2}+31}{4}\)
View Answer
Explanation: Let \(I=\int_1^2 \sqrt{x}-3x \,dx\)
F(x)=\(\int \sqrt{x}-3x \,dx\)
=\(\frac{x^{1/2+1}}{1/2+1}-\frac{3x^2}{2}=\frac{2x^{\frac{3}{2}}}{3}-\frac{3x^2}{2}\)
By using the second fundamental theorem of calculus, we get
I=F(2)-F(1)=\(\left(\frac{2×2^{3/2}}{3}-\frac{3×2^2}{2}\right)-\left(\frac{2×1^{3/2}}{3}-\frac{3×1^2}{2}\right)\)
I=\(\frac{4\sqrt{2}}{3}-6-\frac{2}{3}+\frac{3}{2}=\frac{8\sqrt{2}-36-4+9}{6}=\frac{8\sqrt{2}-31}{6}\)
9. Find the value \(\int_{-1}^23x+x^2-2 \,dx\).
a) –\(\frac{4}{3}\)
b) \(\frac{3}{2}\)
c) \(\frac{5}{6}\)
d) –\(\frac{5}{6}\)
View Answer
Explanation: Let \(I=\int_{-1}^23x+x^2-2 \,dx\)
F(x)=\(\int 3x+x^2-2 \,dx\)
=\(\frac{3x^2}{2}+\frac{x^3}{3}-2x\)
Applying the limits, we get
I=F(2)-F(-1)
I=\(\left(\frac{(3×2^3)}{2}+\frac{2^3}{3}-2(2)\right)-\left(\frac{3 (-1)^2}{2}+\frac{(-1)^3}{3}-2(-1)\right)\)
I=\(6+\frac{8}{3}-4-\frac{3}{2}+\frac{1}{3}-2=\frac{3}{2}\).
10. Find \(\int_1^2 logx.x^2 dx\)
a) log2-\(\frac{7}{3}\)
b) \(\frac{8}{3}\) log2-5
c) \(\frac{8}{3}\) log2-log3
d) \(\frac{8}{3}\) log2
View Answer
Explanation: \(I=\int_0^1 logx.x^2 dx\)
F(x)=\(\int logx.x^2 dx\)
By using the formula \(\int u.v dx=u\int v dx-\int u'(\int v dx)\), we get
\(\int logx.x^2 \,dx=logx \int x^2 dx-\int (logx)’ \int \,x^2 dx\)
=\(\frac{x^3 logx}{3}-\int \frac{1}{x}.x^3/3 dx\)
∴\(F(x)=\frac{x^3 logx}{3}-\frac{x^3}{9}=\frac{x^3}{3} (logx-\frac{1}{3})\)
Hence, by using the fundamental theorem of calculus, we get
I=F(2)-F(1)
I=\(\frac{2^3}{3} \,(log2-\frac{2}{3})-\frac{1^3}{3} \,(log1-\frac{1}{3})\)
I=\(\frac{2^3}{3} \,log2-\frac{16}{3}+\frac{1}{3}\)
I=\(\frac{8}{3}\) log2-5
Sanfoundry Global Education & Learning Series – Mathematics – Class 12.
To practice all chapters and topics of class 12 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Practice Class 12 - Biology MCQs
- Practice Class 12 - Chemistry MCQs
- Practice Class 11 - Mathematics MCQs
- Practice Class 12 - Physics MCQs
- Check Class 12 - Mathematics Books