Foundation Engineering Questions and Answers – Stresses in Flexible Pavements

«
»

This set of Foundation Engineering Multiple Choice Questions & Answers (MCQs) focuses on “Stresses in Flexible Pavements”.

1. The maximum stress occurs on __________
a) vertical plane passing through radial distance of one from the point of load application
b) vertical plane passing through radial distance of two from the point of load application
c) vertical plane passing through the point of load application
d) vertical plane passing through radial distance of three from the point of load application
View Answer

Answer: c
Explanation: The stress equation is given by,
\(σ_z=\frac{3Q}{2πz^2} \left[\frac{1}{1+(\frac{r}{z})^2}\right]^\frac{5}{2},\)
if r=0, we get the maximum stress value. Hence, the maximum stress occurs on vertical plane passing through the point of load application.

advertisement

2. The stress σz at any point (r,z) below the pavement is __________
a) \(σ_z=\frac{3P}{2πz^2}\left[\frac{1}{1+(\frac{r}{z})^3}\right]^\frac{5}{2}\)
b) \(σ_z=\frac{3P}{2πz^2}\left[\frac{1}{(\frac{r}{z})^2}\right]^\frac{5}{2}\)
c) \(σ_z=\left[\frac{1}{1+(\frac{r}{z})^2}\right]^\frac{5}{2}\)
d) \(σ_z=\frac{3P}{2πz^2}\left[\frac{1}{1+(\frac{r}{z})^2}\right]^\frac{5}{2}\)
View Answer

Answer: d
Explanation: The stress σz at any point (r,z) below the pavement is given by,
\(σ_z=\frac{3P}{2πz^2}\left[\frac{1}{1+(\frac{r}{z})^2}\right]^\frac{5}{2},\)
Where, σz is the vertical stress
P is the point load acting at the ground surface
r is the radial horizontal distance
z is the vertical distance.

3. For the loaded circular area of radius a, the vertical stress on a vertical line passing through the center of the loaded area is __________
a) \(σ_z=p\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\)
b) \(σ_z=p\left[1+\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\)
c) \(σ_z=p\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\)
d) \(σ_z=p\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{5}{2}\right]\)
View Answer

Answer: a
Explanation: The vertical pressure σz under a uniformly loaded circular area is given by,
\(σ_z=p\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\)
where, p=load intensity per unit area
a=radius of circle
z= depth of point.
advertisement
advertisement

4. For a loaded circular area of radius ‘a’, μ=Poisson’s ratio, the horizontal radial stress is ________
a) \(σ_r=\frac{p}{2} \left[1+2μ-\frac{2(1+μ)z}{(a^2+z^2)^\frac{1}{2}}\right]\)
b) \(σ_r=\frac{p}{2} \left[\frac{2(1+μ)z}{(a^2+z^2)^\frac{1}{2}}+\frac{z^3}{(a^2+z^2)^\frac{3}{2}}\right]\)
c) \(σ_r=\frac{p}{2} \left[1-2μ-\frac{2(1+μ)z}{(a^2+z^2)^\frac{1}{2}}+\frac{z^3}{(a^2+z^2)^\frac{3}{2}}\right]\)
d) \(σ_r=\frac{p}{2} \left[1+2μ-\frac{2(1+μ)z}{(a^2+z^2)^\frac{1}{2}}+\frac{z^3}{(a^2+z^2)^\frac{3}{2}}\right]\)
View Answer

Answer: d
Explanation: For a loaded circular area of radius ‘a’, the horizontal radial stress is given by,
\(σ_r=\frac{p}{2} \left[1+2μ-\frac{2(1+μ)z}{(a^2+z^2)^\frac{1}{2}}+\frac{z^3}{(a^2+z^2)^\frac{3}{2}}\right],\)
where, σr= horizontal radial stress
p=load intensity per unit area
μ=Poisson’s ratio.

5. The vertical strain ∈z due to triaxial load (σzrtr) under the center of plate is _________
a) \(∈_z=\frac{1}{E}[σ_z-μ(σ_r)]\)
b) \(∈_z=\frac{1}{E}[σ_z-2μ(σ_r)]\)
c) \(∈_z=\frac{1}{E}[σ_z-23μ(σ_r)]\)
d) \(∈_z=\frac{1}{E}[σ_z-0.43μ(σ_r)]\)
View Answer

Answer: b
Explanation: The vertical strain ∈z due to triaxial load (σzrtr) under the center of plate is given by,
\(∈_z=\frac{1}{E}[σ_z-2μ(σ_r)],\)
where,
σz=vertical stress
E=elastic modulus
μ= Poisson’s ratio.
advertisement

6. The elastic strain ∆ of the subgrade is __________
a) \(∆=\frac{p}{E}\left[(2-2μ^2)(a^2+z^2)^\frac{1}{2}-\frac{(1+μ) z^2}{(a^2+z^2)^\frac{1}{2}}+(μ+2μ^2-1)z\right]\)
b) \(∆=\frac{p}{2}\left[\frac{2(1+μ)z}{(a^2+z^2)^\frac{1}{2}}+ \frac{z^3}{(a^2+z^2)^\frac{3}{2}}\right]\)
c) \(∆=\frac{p}{2}\left[1-2μ-\frac{2(1+μ)z}{(a^2+z^2)^\frac{1}{2}}+ \frac{z^3}{(a^2+z^2)^\frac{3}{2}}\right]\)
d) \(∆=\frac{p}{2}\left[1+2μ-\frac{2(1+μ)z}{(a^2+z^2)^\frac{1}{2}}+ \frac{z^3}{(a^2+z^2)^\frac{3}{2}}\right]\)
View Answer

Answer: a
Explanation: The vertical strain is given by,
\(∆=\frac{1}{E}[σ_z-2μ(σ_r)],\) also the vertical and horizontal stresses are given by,
\(σ_z=p\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right]\, and\, σ_r=\frac{p}{2}\left[1+2μ-\frac{2(1+μ)z}{(a^2+z^2)^\frac{1}{2}}+ \frac{z^3}{(a^2+z^2)^\frac{3}{2}}\right],\)
therefore from the three equations, we get,
\(∆=\frac{p}{E}\left[(2-2μ^2)(a^2+z^2)^\frac{1}{2}-\frac{(1+μ) z^2)}{(a^2+z^2)^\frac{1}{2}}+(μ+2μ^2-1)z\right]\)

7. For a Poisson’s ratio of 0.5, the elastic strain ∆ is ___________
a) \(∆=\frac{3pa^2}{2E} \)
b) \(∆=\frac{pa^2}{2E(a^2+z^2)^\frac{1}{2}} \)
c) \(∆=\frac{3pa^2}{2E(a^2+z^2)^\frac{1}{2}} \)
d) \(∆=\frac{a^2}{2E(a^2+z^2)^\frac{1}{2}} \)
View Answer

Answer: c
Explanation: The elastic strain is given by,
\(∆=\frac{p}{E}\left[(2-2μ^2)(a^2+z^2)^\frac{1}{2}-\frac{(1+μ) z^2)}{(a^2+z^2)^\frac{1}{2}}+(μ+2μ^2-1)z\right]\)substituting μ=0.5,
∴ \(∆=\frac{3pa^2}{2E(a^2+z^2)^\frac{1}{2}}. \)
advertisement

8. For a Poisson’s ratio of 0.5, the elastic strain ∆ in terms of Boussinesq settlement factor is __________
a) \(∆=\frac{pa}{E} F_B\)
b) \(∆=\frac{3pa^2}{2E} F_B\)
c) \(∆=\frac{a^2}{2E} F_B\)
d) \(∆=\frac{pa^2}{2E} F_B\)
View Answer

Answer: a
Explanation: When the Poisson’s ratio is 0.5, the elastic strain ∆ is given by,
\(∆=\frac{3pa^2}{2E(a^2+z^2)^\frac{1}{2}},\) the Boussinesq settlement factor is \(F_B=\frac{3}{2} \frac{1}{(1+(\frac{z}{a})^2)^\frac{1}{2}},\)
∴ substituting in the equation,
\(∆=\frac{pa}{E} F_B.\)

9. The Boussinesq settlement factor is given by _______
a) \(F_B=\frac{3}{2} \frac{1}{1+(\frac{z}{a})^2}\)
b) \(F_B=\frac{3}{2} \frac{1}{(1+(\frac{z}{a})^2)^\frac{5}{2}}\)
c) \(F_B=\frac{3}{2} \frac{1}{(1+(\frac{z}{a})^2)^\frac{1}{2}}\)
d) \(F_B=\frac{1}{(1+(\frac{z}{a})^2)^\frac{1}{2}}\)
View Answer

Answer: c
Explanation: The Boussinesq settlement factor is given by equation,
\(F_B=\frac{3}{2} \frac{1}{(1+(\frac{z}{a})^2)^\frac{1}{2}},\)
where, FB= Boussinesq settlement factor
z=depth of point
a=radius of the loaded area.
advertisement

10. If the load is at the surface of subgrade, the Boussinesq settlement factor is given by ________
a) 1.5
b) 2
c) 2.5
d) 3
View Answer

Answer: a
Explanation: When the load is at the surface of subgrade, z=0,
∴ \(F_B=\frac{3}{2}\frac{1}{(1+(\frac{z}{a})^2)^\frac{1}{2}} =\frac{3}{2}\frac{1}{(1+(\frac{0}{a})^2)^\frac{1}{2}} \)
∴ FB=1.5.

11. If the load is at the surface of subgrade, the elastic strain is ________
a) \(∆=\frac{pa}{E} 1.5\)
b) \(∆=\frac{3pa^2}{2E} 2.5\)
c) \(∆=\frac{a^2}{2E} 3\)
d) \(∆=\frac{pa^2}{2E} 3.5\)
View Answer

Answer: a
Explanation: When the Poisson’s ratio is 0.5, the elastic strain ∆ is given by,
\(∆=\frac{pa}{E} F_B,\) and at the surface, z=0,
∴ FB=1.5
Hence, \(∆=\frac{pa}{E} 1.5.\)

12. The Burmister’s influence coefficient is ________
a) \(C_B=\frac{σ_z}{p} \)
b) CBz-p
c) CBz*p
d) CBz+p
View Answer

Answer: a
Explanation: The vertical stress at any depth z is,
σz=CB p. Therefore, the Burmister’s influence coefficient is given by,
\(C_B=\frac{σ_z}{p}. \)

13. If F is a dimensionless factor, the defection in rigid plate of radius a is__________
a) \(∆=\frac{pa}{E} 1.5F\)
b) \(∆=\frac{pa}{E} 1.18F\)
c) \(∆=\frac{a^2}{2E} 1.18F\)
d) \(∆=\frac{pa}{E} 2F\)
View Answer

Answer: a
Explanation: The defections for a two layer system is obtained from,
\(∆=\frac{pa}{E} 1.5F,\) for flexible pavement
\(∆=\frac{pa}{E} 1.18F,\) for rigid pavement.

14. In Burmister analysis, the subgrade layers are non-homogeneous and anisotropic.
a) True
b) False
View Answer

Answer: b
Explanation: In Burmister analysis, the subgrade layers are homogeneous and isotropic. The surface layer is free from shearing and normal stress outside the loaded area. Also, the subgrade layers are elastic.

15. In Burmister analysis, the subgrade layer is infinite only in vertical direction.
a) True
b) False
View Answer

Answer: b
Explanation: In Burmister analysis, the subgrade layer is infinite both in vertical as well as horizontal directions. Both the layers are in continuous contact with each other. The surface layer is infinite in extent in lateral direction, but of finite depth.

Sanfoundry Global Education & Learning Series – Foundation Engineering.

To practice all areas of Foundation Engineering, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

advertisement
advertisement

Leave a Comment

Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn | Youtube | Instagram | Facebook | Twitter