Computational Fluid Dynamics Questions and Answers – Applications

This set of Computational Fluid Dynamics Multiple Choice Questions & Answers (MCQs) focuses on “Applications”.

1. For which of the following purposes can an automobile company not use the CFD tool?
a) Study heat transfer between its parts
b) Increase aerodynamic performance
c) Increasing load capacity
d) Increasing fuel economy
View Answer

Answer: c
Explanation: For increasing the load capacity, the strength of the vehicle should be more. Therefore, a structural analysis would be ideal for that purpose. There will not be a need for fluid flow analysis.

2. The internal flow analysis of an automobile running based on Otto-cycle will need a ___________ analysis.
a) Transient
b) Steady
c) Finite difference
d) Finite element
View Answer

Answer: a
Explanation: The piston inside an internal combustion Otto-engine moves up and down continuously which makes the flow unsteady. A flow of fluid can be called steady if its properties do not vary with time.

3. Which of these forces will have to be analysed using CFD to improve the aerodynamic performance of a vehicle?
a) Lift
b) Drag
c) Thrust
d) Weight
View Answer

Answer: b
Explanation: The drag force is the one which pushes a body backward during its motion. Therefore, to increase the efficiency of a vehicle, there should be less drag.

4. Which of these will not be applicable for CFD in naval applications?
a) Propeller Design
b) Wind loads
c) Lift analysis
d) Stability in manoeuvring
View Answer

Answer: c
Explanation: Hydrodynamic analysis on the propeller of a naval vehicle is done. As a vehicle will be moving through the air, wind loads should also be analysed. The stability of a vehicle when it changes its position (manoeuvring) is also analysed. But, the lift force need not be analysed.

5. CFD can be used to understand the flow behaviour of liquid metal during mould filling. This can be used to ____________
a) Change the mould according to fluid flow
b) Choose the best metal
c) Improve casting techniques
d) Change temperature
View Answer

Answer: c
Explanation: The mould cannot be changed according to fluid flow. It should have the shape of the product needed. Choosing the metal depends upon the application and structural concern. The temperature change may affect the quality of the product. By knowing the flow pattern, casting techniques can be improved.

6. Which of these models would be the best for flow over a submarine?
a) 3-D Navier-Stokes equation for compressible flow without a turbulence model
b) 3-D Navier-Stokes equation for incompressible flow without a turbulence model
c) 3-D Navier-Stokes equation for compressible flow with a turbulence model
d) 3-D Navier-Stokes equation for incompressible flow with a turbulence model
View Answer

Answer: d
Explanation: Incompressible flow is chosen as the flow of water will mostly be incompressible unless the flow velocity is very high. Turbulence model is chosen as the flow properties will get abrupt change due to high Reynolds number.

7. CFD applications provide information for the design of furnaces with ____ thermal efficiency and ____ emissions of pollutants.
a) Increased, reduced
b) Reduced, increased
c) Reduced, reduced
d) Increased, increased
View Answer

Answer: a
Explanation: Thermal efficiency should be increased to get the best out of the input energy. Considering the environmental effects, the emission of pollutants should be less.

8. Which is not an internal analysis?
a) Combustion
b) Turbulence
c) Flow over compressor
d) Exhaust pipes
View Answer

Answer: c
Explanation: Flow over the compressors actually takes place inside a gas turbine engine. But, analysing the flow over the compressor blades is an external flow analysis.

9. What would be the major difference between aerodynamic and hydrodynamic analyses?
a) Temperature
b) Reynolds Number
c) Velocity
d) Domain
View Answer

Answer: b
Explanation: Reynolds number of the flow would be the major change as the density and viscosity of water will be higher than that of air. Therefore, while modelling a hydrodynamic flow, care should be taken.

10. This created a problem in modelling supersonic blunt nose.
a) Change of flow equations from elliptic to hyperbolic
b) High speed with high temperature
c) Supersonic Mach number
d) High temperatures
View Answer

Answer: a
Explanation: Straight to the nose of the vehicle, the shock is normal. This results in a subsonic region and elliptic flow equations. But, downstream the shock is oblique which creates a supersonic region resulting in the elliptic equation. This was the problem in modelling supersonic blunt nose. In later years this was overcome by a better model.

Sanfoundry Global Education & Learning Series – Computational Fluid Dynamics.

To practice all areas of Computational Fluid Dynamics, here is complete set of 1000+ Multiple Choice Questions and Answers.

If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]

Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.