Class 11 Maths MCQ – First Order Derivative – 2

This set of Class 11 Maths Chapter 13 Multiple Choice Questions & Answers (MCQs) focuses on “First Order Derivative – 2”.

1. If A (x1, y1) and B (x2, y2) be two points on the curve y = ax2 + bx + c, then as perLagrange’s mean value theorem whichof the following is correct?
a) At least one point C(x3, y3) where the tangent will be intersecting the chord AB
b) At least one point C(x3, y3) where the tangent will be overlapping to the chord AB
c) At least two points where the tangent will be parallel to the chord AB
d) At least one point C(x3, y3) where the tangent will be parallel to the chord AB
View Answer

Answer: d
Explanation: Here, y = f(x) = ax2 + bx + c
As f(x) is a polynomial function, it is continuous and differentiable for all x.
So, according to geometrical interpretation of mean value theorem there will be at least one point C (x3, y3) between A (x1, y1) and B (x2, y2) where tangent will be parallel chord AB.

2. If \(\lim\limits_{x \rightarrow a}\frac{(a^x-x^a)}{x^x-a^a}\) = -1 then, what is the value of a?
a) 1
b) 2
c) 3
d) 4
View Answer

Answer: a
Explanation: Let, y = xx
Thus, log y = x log x
Differentiating both sides with respect to x, we get,
1/y dy/dx = (x*1/x) + log x
=>dy/dx = y(1 + log x)
Or, dxx/dx = xx(1 + log x)
Using, L’Hospital’s rule,
\(\lim\limits_{x \rightarrow a}\frac{(a^x-x^a)}{x^x-a^a}\) = \(\lim\limits_{x \rightarrow a}\frac{(a^x*log⁡a-x^{a-1})}{x^x(1+logx)}\)
= \(\lim\limits_{x \rightarrow a}\frac{(a^a*log⁡a-a^{a})}{a^a(1+loga)}\)
= (log a – 1)/(log a + 1)
As per the question,
(log a – 1)/(log a + 1) = -1
Or, (log a – 1) = -log a – 1
Or, 2 log a = 0
Or, log a = 0
So, a = 1

3. If functions f(x) and g(x) are continuous in [a, b] and differentiable in (a, b) then which of the following is correct if there exists at least one point c, a < c < b, such that \(\begin{vmatrix}f(a) & f(b) \\g(a) & g(b) \end {vmatrix}\)?
a) (b + a)\(\begin{vmatrix}f(a) & f”(c) \\g(a) & g”(c) \end {vmatrix}\)
b) (b – a)\(\begin{vmatrix}f(a) & f”(c) \\g(a) & g”(c) \end {vmatrix}\)
c) (b + a)\(\begin{vmatrix}f(a) & f'(c) \\g(a) & g'(c) \end {vmatrix}\)
d) (b – a)\(\begin{vmatrix}f(a) & f'(c) \\g(a) & g'(c) \end {vmatrix}\)
View Answer

Answer: d
Explanation: Let, F(x) = \(\begin{vmatrix}f(a) & f(b) \\g(a) & g(b) \end {vmatrix}\) = f(a)g(x) – f(x)g(a) …..(1)
=> F’(x) = f’(a)g’(x) – f’(x)g(a)
Since, f(x) and g(x) are continuous in [a, b] and differentiable in (a, b),
So, F(x) is continuous in [a, b] and differentiable in (a, b)
Also from (1), F(a) = f(a)g(a) – f(a)g(a) = 0
And F(b) = f(a)g(b) – f(b)g(a)
Now, by the mean value theorem, there exists at least one point c, a < c < b, such that,
F’(c) = (F’(b) – F’(a)) / (b – a)
=> f(a) g’(c) – g(a) f’(c) = (f(a)g(b) – f(b)g(a) – 0)/b – a
Or, f(a)g(b) – f(b)g(a) = (b – a)( f(a) g’(c) – g(a) f’(c))
=>\(\begin{vmatrix}f(a) & f(b) \\g(a) & g(b) \end {vmatrix}\) = (b – a)\(\begin{vmatrix}f(a) & f'(c) \\g(a) & g'(c) \end {vmatrix}\)
advertisement

4. What is the number of critical points of f(x) = |x2 – 1| / x2?
a) 0
b) 1
c) 2
d) 3
View Answer

Answer: c
Explanation:Clearly f (x) is not differentiable at x = 1 and x = -1
And x = 0 is not a critical point not in the domain.
Therefore 1 and -1 are critical points.
Thus, there are 2 critical points.

5. What will be the value of dy/dx if x = asec2θ and y = atan3θ at θ = π/4?
a) 1/2
b) 3/4
c) 3/2
d) 1/4
View Answer

Answer: c
Explanation: Since, x = asec2θ,
Therefore, dx/dθ = a*d/dx(sec2θ)
= 2asecθ*secθ tanθ
Again, dy/dθ = a*d/dx(tan3θ)
= a * 3 tan2θ * d/dθ(tanθ)
= 3a tan2θ sec2θ
Therefore, dy/dx = (dy/dθ)/(dx/dθ)
= 3a tan2θ sec2θ/2asecθ*secθ tanθ
Thus, at θ = π/4 we have,
dy/dx = 3/2(tan π/4)
= 3/2
Free 30-Day Java Certification Bootcamp is Live. Join Now!

6. What is the number of critical points for f(x) = max(sinx, cosx) for x belonging to (0, 2π)?
a) 2
b) 5
c) 3
d) 4
View Answer

Answer: c
Explanation: We know that in the range of (0, 2π) the graph of sinx and cosx intersects each other in three points.
And we know that these points of intersection are only the critical points
Thus, there are 3 critical points.

7. If y = (3x – 4)/(x+2) then what s the value of dy/dx?
a) dy/dx
b) y
c) 1/ (dy/dx)
d) A constant
View Answer

Answer: c
Explanation: It is given that y = (3x – 4)/(x + 2) ……….(1)
Now differentiating both the sides, we get that,
dy/dx = (x + 2)*3 – (3x – 4)/(x + 2)2
= 10/(x + 2)2
Again from (1) we get,
xy + 2y = 3x – 4
or, x = – 2(y + 2)
Thus dx/dy = -2* ((y – 3) – (y + 2))/ (y – 3)2
Or, y – 3 = (3x – 4)/(x + 2) – 3
= -10/(x + 2)
Thus, dx/dy = 10/(-10/(x + 2))2
= (x + 2)2/10, where,x ≠ 0 i.e. dx/dy ≠ 0
Therefore, dy/dx*dx/dy = 10/(x + 2)2 * -10/(x + 2)
= 1
=> dy/dx = 1/(dy/dx)

8. What is the value of (dy/dx)2 + 1 if x = a sin2θ(1 + cos2θ) and y = a cos2θ(1 – cos2θ)?
a) Tan2θ
b) Cosec2θ
c) Cot2θ
d) Sec2θ
View Answer

Answer: d
Explanation: Here, x = a sin2θ(1 + cos2θ) and y = a cos2θ(1 – cos2θ)
=> x = 2a cos2θ*sin2θ and y = 2a sin2θ*cos2θ
Now differentiating x and y with respect to θ we get,
dx/dθ = 2a[cos2θ*2cos2θ + sin2θ*2cos2θ cos2θ]
= 4a cosθ (cosθ cos2θ – sinθ sin2θ )
= 4a cosθ cos(θ + 2θ)
= 4a cosθ cos3θ
dy/dθ = 2a[cos2θ*2cosθ sinθ + sin2θ (-2sin2θ)]
= 4a sinθ (cosθ cos2θ – sinθ sin2θ )
= 4a sinθ cos(θ + 2θ)
= 4a sinθ cos3θ
Thus, dy/dx = (dy/dθ)/(dx/dθ)
= (= 4a cosθ cos3θ)/( 4a sinθ cos3θ)
= tanθ
So, (dy/dx)2 + 1 = 1 + tan2θ = sec2θ

9. If, y = 1/(1 + x + x2 + x3), then what is the value of y’ at x = 0?
a) 0
b) 1
c) -1
d) ½
View Answer

Answer: c
Explanation: Given, y = 1/(1 + x + x2 + x3)
Assuming x ≠ 1
Or, y = (x – 1)/(x – 1)( x3 + x2 + x + 1)
Differentiating both the sides with respect to x, we get,
dy/dx = [(x4 – 1)*1 – (x – 1)*4x3]/ (x4 – 1)2
Thus, putting x = 0 in the above equation, we get,
(dy/dx) = -1/(-1)2
= -1
advertisement

Sanfoundry Global Education & Learning Series – Mathematics – Class 11.

To practice all chapters and topics of class 11 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 40s–60s and exploring new directions in your career, I also offer mentoring. Learn more here.