Mathematics Questions and Answers – Determinant – 3

«
»

This set of Mathematics Quiz for Class 12 focuses on “Determinant – 3”.

1. What will be the value of \(\begin{vmatrix}0 & p-q & a – b\\q – p & 0 & x – y\\b – a & y – x & 0 \end {vmatrix}\)?
a) 0
b) a + b
c) x + y
d) p + q
View Answer

Answer: a
Explanation: The above matrix is a skew symmetric matrix and its order is odd
And we know that for any skew symmetric matrix with odd order has determinant = 0
Therefore, the value of the given determinant = 0.
advertisement

2. What will be the value of f(x) if \(\begin{vmatrix}x & b & c\\a & y & c\\a & b & z \end {vmatrix}\)?
a) (x – a)(y – b)(z – c)(\(\frac{x}{x-a} + \frac{b}{y – b} – \frac{c}{z-c}\) – 2)
b) (x – a)(y – b)(z – c)(\(\frac{x}{x-a} – \frac{b}{y – b} – \frac{c}{z-c}\) – 2)
c) (x – a)(y – b)(z – c)(\(\frac{x}{x-a} + \frac{b}{y – b} + \frac{c}{z-c}\) – 2)
d) (x – a)(y – b)(z – c)(\(\frac{x}{x-a} + \frac{b}{y – b} + \frac{c}{z-c}\) + 2)
View Answer

Answer: c
Explanation: Given, \(\begin{vmatrix}x & b & c\\a & y & c\\a & b & z \end {vmatrix}\) = \(\begin{vmatrix}x & b & c\\a – x & y – b & 0\\0 & b – y & z – c \end {vmatrix}\)

Applying the operation R2 = R2 – R1 and R3 = R3 – R2
= (x – a)(y – b)(z – c)\(\begin{vmatrix}x/(x – a) & b/(y – b) & c/(z – c)\\-1 & y 1 & 0\\0 & -1 & 1 \end {vmatrix}\)
Now, expanding the determinant we get,
= (x – a)(y – b)(z – c)(\(\frac{x}{x-a} + \frac{b}{y – b} + \frac{c}{z-c}\))
= (x – a)(y – b)(z – c)(\(\frac{x}{x-a} + \frac{b}{y – b} + \frac{c}{z-c}\) – 2)
This is because,
\(\frac{b}{y – b} + \frac{c}{z-c} = \frac{y-(y-b)}{y-b} + \frac{z-(z-c)}{z-c} = \frac{y}{y-b}\) – 1 + \(\frac{z}{z-c}\) – 1 = \(\frac{y}{y-b} + \frac{z}{z-c}\) – 2

3. What will be the value of \(\begin{vmatrix}cos^2⁡ θ & cosθ \, sinθ & -sinθ \\cosθ\, sinθ & sin^2⁡θ & cosθ \\sinθ & -cosθ & 0 \end {vmatrix}\)?
a) -1
b) 0
c) 1
d) 2
View Answer

Answer: c
Explanation: The given matrix is, \(\begin{vmatrix}cos^2 θ & cosθ\, sinθ & -sinθ \\cosθ\, sinθ & sin^2⁡ θ & cosθ \\sinθ & -cosθ & 0 \end {vmatrix}\)
Now, performing the row operations R1 = R1 + sinθR3 and R2 = R2 – cosθR3
=\(\begin{vmatrix}cos^2⁡ θ + sin^2⁡ θ & cosθ\, sinθ – cosθ sinθ & -sinθ \\cosθ\, sinθ – cosθ sinθ & cos^2⁡ θ + sin^2 ⁡θ & cosθ \\sinθ & -cosθ & 0 \end {vmatrix}\)
Solving further,
= \(\begin{vmatrix}1 & 0 & -sinθ \\0 & 1 & cosθ \\sinθ & -cosθ & 0 \end {vmatrix}\)
Breaking the determinant, we get,
= 1(0 + cos2θ) – sinθ(0 – sinθ)
= 1
advertisement
advertisement

4. What is the value of \(\begin{vmatrix}sin^2 ⁡a & sina\, cosa & cos^2 ⁡a \\sin^2 ⁡b & sinb\, cosb & cos^2 ⁡b \\sin^2⁡ c & sinc\, cosc & cos^2⁡ c \end {vmatrix}\)?
a) -sin(a – b) sin(b – c) sin(c – a)
b) sin(a – b) sin(b – c) sin(c – a)
c) -sin(a + b) sin(b + c) sin(c + a)
d) sin(a + b) sin(b + c) sin(c + a)
View Answer

Answer: a
Explanation: We have, \(\begin{vmatrix}sin^2 a & sina \,cosa & cos^2 a\\sin^2 b & sinb\, cosb & cos^2 b\\sin^2 c & sinc\, cosc & cos^2 c \end {vmatrix}\)
Now, multiplying by 2 in both numerator and denominator of column 2 and C1 = C1 + C3 we get,
1/2 \(\begin{vmatrix}sin^2 a + cos^2 a & 2sina\, cosa & cos^2 a\\sin^2 b + cos^2 b & 2sinb\, cosb & cos^2 b\\sin^2 c + cos^2 c & 2sinc\, cosc & cos^2 c \end {vmatrix}\)
= 1/2 \(\begin{vmatrix}sin^2 a + cos^2 a & sin2a & cos^2 a\\sin^2 b + cos^2 b & sin2b & cos^2 b\\sin^2 c + cos^2 c & sin2c & cos^2 c \end {vmatrix}\)
= 1/2 \(\begin{vmatrix}1 & sin2a & cos^2 a\\1 & sin2b & cos^2 b\\1 & sin2c & cos^2 c \end {vmatrix}\)
Solving further,
= 1/2 \(\begin{vmatrix}1 & sin2a & cos^2⁡a \\0 & sin2b-sin2a & cos^2⁡ b-cos^2 ⁡a \\0 & sin2c-sin2a & cos^2 ⁡c-cos^2 ⁡a \end {vmatrix}\)
= 1/2 [(sin2b – sin2a)(cos2⁡c – cos2⁡a) – (cos2 b – cos2a)(sin2c – sin2a)]
Now, since, [cos2 ⁡A + cos2 B = sin(A + B) * sin(B – A)]
So, 1/2 [2 cos(a + b) sin(b – a) * sin(c + a)sin(a – c) – sin(a + b)sin(a – b) * 2 cos(a + c)sin(c – a)]
= sin(a – b)sin(c – a)[sin(c + a)cos(a + b) – cos(c + a) sin(a + b)]
= sin(a – b) sin(c – a) sin(c + a – a – b)
= -sin(a – b) sin(b – c) sin(c – a)

5. What will be the value of f(x) if \(\begin{vmatrix}2ab & a^2 & b^2 \\a^2 & b^2 & 2ab \\b^2 & 2ab & a^2 \end {vmatrix}\)?
a) a2 + b2
b) -(a2 + b2)
c) -(a2 + b2)3
d) -(a3 + b3)2
View Answer

Answer: d
Explanation: Given,\(\begin{vmatrix}2ab & a^2 & b^2 \\a^2 & b^2 & 2ab \\b^2 & 2ab & a^2 \end {vmatrix}\)
Using C1 = C1 + C2 + C3
= \(\begin{vmatrix}a^2 + b^2 + 2ab & a^2 & b^2 \\a^2 + b^2 + 2ab & b^2 & 2ab \\a^2 + b^2 + 2ab & 2ab & a^2 \end {vmatrix}\)
= (a + b)2\(\begin{vmatrix}1 & a^2 & b^2 \\1 & b^2 & 2ab \\1 & 2ab & a^2 \end {vmatrix}\)
= (a + b)2\(\begin{vmatrix}1 & a^2 & b^2 \\1 & b^2 – a^2 & 2ab – b^2 \\0 & 2ab – a^2 & a^2 – b^2 \end {vmatrix}\)
= (a + b)2[(b2 – a2)(a2 – b2) – (2ab – b2)( 2ab – a2)]
= -(a + b)2[(a2 – b2)2 + 4a2b2 – 2ab(a2 + b2) + a2 b2)]
= –(a + b)2[(a2+b2)2 – 2(a2+b2) (ab)+(ab)2]
= –(a + b)2(a2 + b2 – ab)2
= –[(a + b)2(a2 + b2 – ab)2]2
= –(a3 + b3)2
advertisement

6. What will be the value of f(x) if \(\begin{vmatrix}1 & ab & (\frac{1}{a} + \frac{1}{b}) \\1 & bc & (\frac{1}{b} + \frac{1}{c}) \\1 & ca & (\frac{1}{c} + \frac{1}{a})\end {vmatrix}\)?
a) -1
b) 0
c) 1
d) Can’t be predicted
View Answer

Answer: c
Explanation: We have,\(\begin{vmatrix}1 & ab & (\frac{1}{a} + \frac{1}{b}) \\1 & bc & (\frac{1}{b} + \frac{1}{c}) \\1 & ca & (\frac{1}{c} + \frac{1}{a})\end {vmatrix}\)
= (1/abc)\(\begin{vmatrix}1 & ab & \frac{b + a}{ab} * abc \\1 & bc & \frac{b + c}{bc} * abc \\1 & ca & \frac{c + a}{ac} * abc \end {vmatrix}\)
= (1/abc)\(\begin{vmatrix}1 & ab & bc + ac \\1 & bc & ac + ab \\1 & ca & ab + bc \end {vmatrix}\)
Operating, C3 = C3 + C2
= (1/abc)\(\begin{vmatrix}1 & ab & ab + bc + ac \\1 & bc & ab + bc + ac \\1 & ca & ab + bc + ac \end {vmatrix}\)
= ((ab + bc + ac)/abc)\(\begin{vmatrix}1 & ab & 1 \\1 & bc & 1 \\1 & ca & 1 \end {vmatrix}\)
= 0

7. What is the value of \(\begin{vmatrix}1 & cosx-sinx & cosx + sinx \\1 & cosy-siny & cosy + siny \\1 & cosz-sinz & cosz + sinz \end {vmatrix}\)?
a) 3\(\begin{vmatrix}1 & cosx & sinx \\1 & cosy & siny \\1 & cosz & sinz \end {vmatrix}\)
b) \(\begin{vmatrix}1 & cosx & sinx \\1 & cosy & siny \\1 & cosz & sinz \end {vmatrix}\)
c) 2\(\begin{vmatrix}1 & cosx & sinx \\1 & cosy & siny \\1 & cosz & sinz \end {vmatrix}\)
d) 4\(\begin{vmatrix}1 & cosx & sinx \\1 & cosy & siny \\1 & cosz & sinz \end {vmatrix}\)
View Answer

Answer: c
Explanation: Let, a = cosx, b = cosy, c = cosz, p =sinx, q = siny and r = sinz
So, \(\begin{vmatrix}1 & a – p & a + p \\1 & b – q & b + q \\1 & c – r & c + r \end {vmatrix}\)
Making C3 = C3 + C2
= \(\begin{vmatrix}1 & a – p & 2a \\1 & b – q & 2b \\1 & c – r & 2c \end {vmatrix}\)

= 2\(\begin{vmatrix}1 & a – p & a \\1 & b – q & b \\1 & c – r & c \end {vmatrix}\)
Making C2 = C2 – C3
= -2\(\begin{vmatrix}1 & p & a \\1 & q & b \\1 & r & c \end {vmatrix}\)
Interchanging 2nd and 3rd column, we get,
2\(\begin{vmatrix}1 & a & p \\1 & b & q \\1 & c & r \end {vmatrix}\)
= 2\(\begin{vmatrix}1 & cosx & sinx \\1 & cosy & siny \\1 & cosz & sinz \end {vmatrix}\)
advertisement

8. What will be the value of \(\begin{vmatrix}a & b & c \\b & c & a \\c & a & b \end {vmatrix}\)?
a) (a3 + b3 + c3 + 3abc)
b) –(a3 + b3 + c3 + 3abc)
c) (a3 + b3 + c3 – 3abc)
d) –(a3 + b3 + c3 – 3abc)
View Answer

Answer: d
Explanation: Given, \(\begin{vmatrix}a & b & c \\b & c & a \\c & a & b \end {vmatrix}\)
Replacing R1 = R1 + R2 + R3
\(\begin{vmatrix}a + b + c & a + b + c & a + b + c \\b & c & a \\c & a & b \end {vmatrix}\)
= (a + b + c)\(\begin{vmatrix}1 & 1 & 1 \\b & c & a \\c & a & b \end {vmatrix}\)
Replacing 2nd column by C2 – C1 and 3rd column by C3 – C1
= (a + b + c)\(\begin{vmatrix}1 & 0 & 0 \\b & c-b & a-b \\c & a-c & b-c \end {vmatrix}\)
= (a + b + c)[(c – b)(b – c) – (a – b)(a – c)]
= (a + b + c)(bc – b2 – c2 + bc + a2 + ac + ab – bc)
= -(a + b + c)(a2 + b2 + c2 – ab – bc – ac)
= -(a3 + b3 + c3 – 3abc)

9. What will be the value of \(\begin{vmatrix}2bc – a^2 & c^2 & b^2 \\c^2 & 2ac – b^2 & a^2 \\b^2 & a^2 & 2ab – c^2 \end {vmatrix}\) if given another determinant \(\begin{vmatrix}a & b & c \\b & c & a \\c & a & b \end {vmatrix}\)?
a) (a3 + b3 + c3 + 3abc)2
b) –(a3 + b3 + c3 + 3abc)2
c) (a3 + b3 + c3 – 3abc)2
d) –(a3 + b3 + c3 – 3abc)2
View Answer

Answer: c
Explanation: Now, \(\begin{vmatrix}a & b & c \\b & c & a \\c & a & b \end {vmatrix}\)
Interchanging 2nd and 3rd columns,
= –\(\begin{vmatrix}a & c & b \\b & a & c \\c & b & a \end {vmatrix}\)
= \(\begin{vmatrix}-a & c & b \\ -b & a & c \\-c & b & a \end {vmatrix}\)
So, \(\begin{vmatrix}a & b & c \\b & c & a \\c & a & b \end {vmatrix}^2\) = \(\begin{vmatrix}a & b & c \\b & c & a \\c & a & b \end {vmatrix}\)\(\begin{vmatrix} -a & c & b \\ -b & a & c \\-c & b & a \end {vmatrix}\)
= {–(a3 + b3 + c3 – 3abc)}2 = \(\begin{vmatrix}-a^2 + bc + bc & -ab + ab + c^2 & -ac + b^2 + ca \\-ab + ab + c^2 & -ac – b^2 + ca & -a^2 + bc + bc \\-ac + b^2 + ca & -a^2 + bc + bc & -ab + ab – c^2 \end {vmatrix}\)
=> \(\begin{vmatrix}2bc – a^2 & c^2 & b^2 \\c^2 & 2ac – b^2 & a^2 \\b^2 & a^2 & 2ab – c^2 \end {vmatrix}\) = (a3 + b3 + c3 – 3abc)2
advertisement

10. What will be the value of f(x) if \(\begin{vmatrix}1 & 1 & 1 \\x & y & z \\x^3 & y^3 & z^3 \end {vmatrix}\)?
a) -1
b) 0
c) 1
d) 2
View Answer

Answer: b
Explanation: Given, \(\begin{vmatrix}1 & 1 & 1 \\x & y & z \\x^3 & y^3 & z^3 \end {vmatrix}\)
Operating, C1 = C1 – C2 and C2 = C2 – C3
= \(\begin{vmatrix}1 & 1 & 1 \\x – y & y – z & y \\x^3 – y^3 & y^3 – z^3 & z^3 \end {vmatrix}\)
Expanding by the 1st row,
= (x – y)(y3 – z3) – (y – z)(x3 – y3)
= (x – y)(y – z)[(y2 + yz + z2) – (x2 + xy + y2)]
= (x – y)(y – z)(z – x)(x + y + z)
As, x + y + z = 0
= 0

11. If, x3 = 1, then, what will be the value of\(\begin{vmatrix}a & b & c \\b & c & a \\c & a & b \end {vmatrix}\)?
a) -(a + bx + cx2)\(\begin{vmatrix}1 & b & c \\x^2 & c & a \\x & a & b \end {vmatrix}\)
b) (a + bx + cx2)\(\begin{vmatrix}1 & b & c \\x^2 & c & a \\x & a & b \end {vmatrix}\)
c) (a – bx – cx2)\(\begin{vmatrix}1 & b & c \\x^2 & c & a \\x & a & b \end {vmatrix}\)
d) (a + bx – cx2)\(\begin{vmatrix}1 & b & c \\x^2 & c & a \\x & a & b \end {vmatrix}\)
View Answer

Answer: b
Explanation: We have, \(\begin{vmatrix}a & b & c \\b & c & a \\c & a & b \end {vmatrix}\)
As, x3 = 1,
= \(\begin{vmatrix}a & bx & cx^2 \\b & cx & ax^2 \\c & ax & bx^2 \end {vmatrix}\)
Replacing the 1st column by C1 + C2 + C3 we get,
= \(\begin{vmatrix}a + bx + cx^2 & bx & cx^2 \\ b + cx + ax^2 & cx & ax^2 \\c + ax + bx^2 & ax & bx^2 \end {vmatrix}\)
As, x3 = 1 so, x4 = x3 * x = x
= \(\begin{vmatrix}a + bx + cx^2 & b & c \\x^2 (a + bx + cx^2) & c & a \\x(a + bx + cx^2) & a & b \end {vmatrix}\)
= (a + bx + cx2)\(\begin{vmatrix}1 & b & c \\x^2 & c & a \\x & a & b \end {vmatrix}\)

Sanfoundry Global Education & Learning Series – Mathematics – Class 12.

To practice Mathematics Quiz for Class 12, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

advertisement
advertisement
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn | Youtube | Instagram | Facebook | Twitter