Class 11 Maths MCQ – Limits of Trigonometric Functions

This set of Class 11 Maths Chapter 13 Multiple Choice Questions & Answers (MCQs) focuses on “Limits of Trigonometric Functions”.

1. What is the value of \(\lim\limits_{y \rightarrow \pi/2}\frac{sin⁡ x}{x}\)?
a) \(\frac{2}{\pi}\)
b) \(\frac{\pi}{2}\)
c) 1
d) 0
View Answer

Answer: a
Explanation: sin ⁡\(\frac{\pi}{2}\) = 1
\(\lim\limits_{y \rightarrow \pi/2}\frac{sin⁡x}{x} = \frac{sin⁡\frac{π}{2}}{\frac{\pi}{2}}\)
= \(\frac{1}{\frac{\pi}{2}}\)
= \(\frac{2}{\pi}\)

2. What is the value of \(\lim\limits_{y \rightarrow 0}\frac{sin⁡3y}{3y}\)?
a) 0
b) 1
c) 3
d) \(\frac{1}{3}\)
View Answer

Answer: b
Explanation: We know that \(\lim\limits_{x \rightarrow 0}\frac{sin⁡x}{x}\) = 1.
Here x tends to 3y.
Also, since this is of the form \(\frac{0}{0}\), we use L’Hospital’s rule and differentiate the numerator and denominator separately.
= \(\lim\limits_{y \rightarrow 0}\frac{3\, cos\, 3y}{3}\)
= 1

3. What is the value of \(\lim\limits_{x \rightarrow 0}\frac{x^2sec x}{sin⁡ x}\)?
a) 3
b) 2
c) 1
d) 0
View Answer

Answer: d
Explanation: \(\lim\limits_{x \rightarrow 0}\frac{x}{sin⁡ x}\)x \(\lim\limits_{x \rightarrow 0}⁡\frac{x}{cos⁡ x}\)
= 1 x 0
= 0
advertisement

4. What is the value of \(\lim\limits_{x \rightarrow 0}\frac{x \,tanx}{cot\, x}\)?
a) 0
b) 1
c) 2
d) \(\frac{1}{2}\)
View Answer

Answer: a
Explanation: \(\lim\limits_{x \rightarrow 0}\frac{x tanx}{cot x}\) = \(\lim\limits_{x \rightarrow 0}\frac{x\frac{sin⁡ x}{cos ⁡x}}{\frac{cos⁡ x}{sin⁡ x}}\)
= \(\lim\limits_{x \rightarrow 0}\) ⁡x
= 0

5. What is the value of \(\lim\limits_{x \rightarrow \infty}\frac{x sin⁡\frac{2}{x}}{2}\)?
a) 1
b) 2
c) \(\frac{1}{2}\)
d) Limit does not exist
View Answer

Answer: a
Explanation:
This is of the form \(\frac{0}{0}\), so we use L’Hospital’s rule.
= \(\lim\limits_{x \rightarrow \infty}\frac{\frac{-2}{x^2}cos⁡\frac{2}{x}}{\frac{-2}{x^2}}\)
= \(\lim\limits_{x \rightarrow \infty}\)cos\(\frac{2}{x}\)
= 1
Free 30-Day C Certification Bootcamp is Live. Join Now!

6. Which of the following limits does not yield 1?
a) \(\lim\limits_{x \rightarrow 0}\frac{⁡sin x}{x}\)
b) \(\lim\limits_{x \rightarrow 0}\frac{⁡tan x}{cot x}\)
c) \(\lim\limits_{x \rightarrow 0}(\frac{1}{e^x}+cos⁡ x)\)
d) \(\lim\limits_{x \rightarrow 0}\) x cosec x
View Answer

Answer: c
Explanation: \(\lim\limits_{x \rightarrow 0}(\frac{1}{e^x} + sin⁡ x) = \frac{1}{e^0}\) + cos (0)
= 1 + 1
= 2

7. What is the value of \(\lim\limits_{y \rightarrow 0}\)(32 x2 cosec2 ⁡4x)?
a) 1
b) 4
c) 2
d) 3
View Answer

Answer: c
Explanation: The limit can be written as, \(\lim\limits_{x \rightarrow 0}\frac{32x^2}{sin^2⁡4x}\)
= 2 x \(\lim\limits_{x \rightarrow 0}\frac{4x}{sin 4x}\) x \(\lim\limits_{x \rightarrow 0}\frac{4x}{sin 4x}\)
= 2 x 1 x 1
= 2

8. What is the value of the limit f(x) = \(\frac{sin^2⁡x+\sqrt 2 sin ⁡x}{x^2-4x}\) if x approaches 0?
a) \(\frac{1}{\sqrt 2}\)
b) \(\frac{-1}{\sqrt 2}\)
c) \(\frac{-1}{2\sqrt 2}\)
d) \(\frac{1}{2\sqrt 2}\)
View Answer

Answer: c
Explanation: This is of the form \(\frac{0}{0}\), therefore we use L’Hospital’s rule and differentiate the numerator and denominator.
= \(\lim\limits_{x \rightarrow 0}\frac{2sin⁡ \,x cos \,⁡x + cos \,⁡x \sqrt 2}{2x – 4}\)
= \(\frac{0+\sqrt 2}{-4}\)
= \(\frac{-1}{2\sqrt 2}\)

9. What is the value of the \(\lim\limits_{x \rightarrow \frac{3\pi}{2}}\frac{cos⁡ x sin⁡ x}{sin⁡2x}\)?
a) \(\frac{-1}{2}\)
b) \(\frac{1}{2}\)
c) \(\frac{1}{4}\)
d) \(\frac{-1}{4}\)
View Answer

Answer: b
Explanation: \(\lim\limits_{x \rightarrow \frac{3\pi}{2}}\frac{cos⁡ x sin⁡ x}{sin⁡2x}\) =\(\lim\limits_{x \rightarrow \frac{3\pi}{2}}\frac{cos⁡ x sin⁡ x}{2 cos x sin⁡ x}\)
= \(\frac{1}{2}\)
advertisement

10. What is the value of the limit \(\lim\limits_{x \rightarrow \frac{\pi}{2}}\frac{sin^2⁡x-1}{cos ⁡x}\)?
a) 0
b) 4
c) 1
d) Limit does not exist
View Answer

Answer: a
Explanation: \(\lim\limits_{x \rightarrow \frac{\pi}{2}}\frac{sin^2⁡x-1}{cos ⁡x}\) = \(\lim\limits_{x \rightarrow \frac{\pi}{2}}\frac{-cos^2 x}{cos ⁡x}\)
=\(\lim\limits_{x \rightarrow \frac{\pi}{2}}\) -cosx
= 0

11. What is the value of the limit \(\lim\limits_{x \rightarrow 0}\frac{sin^2⁡x}{x^2}\)?
a) 2
b) 1
c) Limit does not exist
d) 4
View Answer

Answer: b
Explanation: \(\lim\limits_{x \rightarrow 0}\frac{sin^2⁡x}{x^2}\) =
= (\(\lim\limits_{x \rightarrow 0}\frac{sin ⁡x}{x}\) x \(\lim\limits_{x \rightarrow 0}\frac{sinx}{x}\))
We apply L’Hospital’s rule and differentiate numerator and denominator.
= (\(\lim\limits_{x \rightarrow 0}\frac{cos x}{1}\) x \(\lim\limits_{x \rightarrow 0}\frac{cos x}{1}\))
= 1

12. What is the value of \(\lim\limits_{x \rightarrow 0}\frac{e^x(sin^2⁡ x)}{x^3}\)?
a) 2
b) 3
c) 1
d) 0
View Answer

Answer: c
Explanation: \(\lim\limits_{x \rightarrow 0}\frac{sin^2⁡ x}{x^2}\) x \(\lim\limits_{x \rightarrow 0}\frac{e^x}{x}\)
We apply L’Hospital’s rule and differentiate numerator and denominator.
= 1 x \(\lim\limits_{x \rightarrow 0}\frac{e^x}{1}\)
= 1

Sanfoundry Global Education & Learning Series – Mathematics – Class 11.

To practice all chapters and topics of class 11 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 40s–60s and exploring new directions in your career, I also offer mentoring. Learn more here.