# Mathematics Questions and Answers – Determinants – Minors and Cofactors

«
»

This set of Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Determinants – Minors and Cofactors”.

1. Which of the following is the formula for cofactor of an element aij ?
a) Aij=(1)i+j Mij
b) Aij=(-2)i+j Mij
c) Aij=(-1)i+j Mij
d) Aij=(-1)i-j Mij

Explanation: The cofactor of an element aij, denoted by Aij is given by
Aij=(-1)i+j Mij, where Mij is the minor of the element aij.

2. What is the minor of the element 5 in the determinant Δ=$$\begin{vmatrix}1&5&4\\2&3&6\\7&9&4\end{vmatrix}$$?
a) -34
b) 34
c) -17
d) 21

Explanation: The minor of element 5 in the determinant Δ=$$\begin{vmatrix}1&5&4\\2&3&6\\7&9&4\end{vmatrix}$$ is the determinant obtained by deleting the row and column containing element 5.
∴M12=$$\begin{vmatrix}2&6\\7&4\end{vmatrix}$$=2(4)-7(6)=-34.

3. Find the minor and cofactor respectively for the element 3 in the determinant Δ=$$\begin{vmatrix}1&5\\3&6\end{vmatrix}$$.
a) M21=-5, A21=-5
b) M21=5, A21=-5
c) M21=-5, A21=5
d) M21=5, A21=5

Explanation: The element 3 is in the second row (i=2) and first column(j=1).
∴M21=5 (obtained by deleting R2 and C1 in Δ)
A21=(-1)1+2 M21=-1×5 =-5.

4. Find the minor of the element 1 in the determinant Δ=$$\begin{vmatrix}1&5\\3&8\end{vmatrix}$$.
a) 5
b) 1
c) 8
d) 3

Explanation: The minor of the element 1 can be obtained by deleting the first row and the first column
∴M11=8.

5. Find the cofactor of element -3 in the determinant Δ=$$\begin{vmatrix}1&4&4\\-3&5&9\\2&1&2\end{vmatrix}$$.
a) -4
b) 4
c) -5
d) -3

Explanation: The minor of element -3 is given by
M21=$$\begin{vmatrix}4&4\\1&2\end{vmatrix}$$=4(2)-4=4 (Obtained by eliminating R2 and C1)
∴A21=(-1)2+1 M21=(-1)3 4=-4.

6. If Δ=$$\begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}$$, then the determinant in terms of cofactors Aij can be expressed as a11 A11+a21 A21+a31 A31.
a) True
b) False

Explanation: The given statement is true.
Expanding the determinant Δ=$$\begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}$$ along R1, we get
Δ=(-1)1+1 a11 $$\begin{vmatrix}a_{22}&a_{23}\\a_{32}&a_{33} \end{vmatrix}$$+(-1)1+2 a12 $$\begin{vmatrix}a_{21}&a_{23}\\a_{31}&a_{33} \end{vmatrix}$$+(-1)1+3 a13 $$\begin{vmatrix}a_{21}&a_{22}\\a_{31}&a_{32} \end{vmatrix}$$
Δ=a11 A11+a21 A21+a31 A31, where Aij is the cofactor of aij.

7. Find the minor of the element 2 in the determinant Δ=$$\begin{vmatrix}1&9\\2&3\end{vmatrix}$$?
a) 3
b) 9
c) 1
d) 2

Explanation: The minor of the element 2 can be obtained by deleting the first row and the first column
∴M11=9.

8. For which of the elements in the determinant Δ=$$\begin{vmatrix}1&8&-6\\2&-3&4\\-7&9&5\end{vmatrix}$$ the cofactor is -37.
a) 4
b) 1
c) -6
d) -3

Explanation: Consider the element -3 in Δ=$$\begin{vmatrix}1&8&-6\\2&-3&4\\-7&9&5\end{vmatrix}$$
The cofactor of the element -3 is given by
A22=(-1)2+2 M22
M22=$$\begin{vmatrix}1&-6\\-7&5\end{vmatrix}$$=1(5)-(-6)(-7)=5-42=-37
A22=(-1)2+2 (-37)=-37.

9. For which of the following elements in the determinant Δ=$$\begin{vmatrix}2&8\\4&7\end{vmatrix}$$, the minor of the element is 2?
a) 2
b) 7
c) 4
d) 8

Explanation: Consider the element 7 in the determinant Δ=$$\begin{vmatrix}2&8\\4&7\end{vmatrix}$$
The minor of the element 7 can be obtained by deleting R2 and C2
∴M22=2
Hence, the minor of the element 7 is 2.

10. For which of the following element in the determinant Δ=$$\begin{vmatrix}5&-5&8\\6&2&-1\\5&-6&8\end{vmatrix}$$ , the minor and the cofactor both are zero.
a) -5
b) 2
c) -6
d) 8

Explanation: Consider the element 2 in the determinant Δ=$$\begin{vmatrix}5&-5&8\\6&2&-1\\5&-6&8\end{vmatrix}$$
The minor of the element 2 is given by
∴M22=$$\begin{vmatrix}5&8\\5&8\end{vmatrix}$$=40-40=0
⇒A22=(-1)2+2 (0)=0.

Sanfoundry Global Education & Learning Series – Mathematics – Class 12.

To practice all areas of Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs! 