Class 12 Maths MCQ – Properties of Determinants

This set of Class 12 Maths Chapter 4 Multiple Choice Questions & Answers (MCQs) focuses on “Properties of Determinants”.

1. Which of the following is not a property of determinant?
a) The value of determinant changes if all of its rows and columns are interchanged
b) The value of determinant changes if any two rows or columns are interchanged
c) The value of determinant is zero if any two rows and columns are identical
d) The value of determinant gets multiplied by k, if each element of row or column is multiplied by k
View Answer

Answer: a
Explanation: The value of determinant remains unchanged if all of its rows and columns are interchanged i.e. |A|=|A’|, where A is a square matrix and A’ is the transpose of the matrix A.

2. Find the determinant of the matrix A=\(\begin{bmatrix}1&x&y\\1&x&-y\\1&-x^2&y^2\end{bmatrix}\).
a) (x+1)
b) -2xy(x+1)
c) xy(x+1)
d) 2xy(x+1)
View Answer

Answer: b
Explanation: Given that, A=\(\begin{bmatrix}1&x&y\\1&x&-y\\1&-x^2&y^2\end{bmatrix}\)
Δ=\(\begin{vmatrix}1&x&y\\1&x&-y\\1 &-x^2&y^2 \end{vmatrix}\)
Taking x common C2 and y common from C3, we get
Expanding along R1, we get

3. Evaluate \(\begin{vmatrix}x^2&x^3&x^4\\x&y&z\\x^2&x^3&x^4 \end{vmatrix}\).
a) 0
b) 1
c) xyz
d) x2 yz3
View Answer

Answer: a
Explanation: Δ=\(\begin{vmatrix}x^2&x^3&x^4\\x&y&z\\x^2&x^3&x^4 \end{vmatrix}\)
If the elements of any two rows or columns are identical, then the value of determinant is zero. Here, the elements of row 1 and row 3 are identical. Hence, its determinant is 0.

4. Evaluate \(\begin{vmatrix}cos⁡θ&-cos⁡θ&1\\sin^2⁡θ&cos^2⁡θ&1\\sin⁡θ&-sin⁡θ&1\end{vmatrix}\).
a) sin⁡θ+cos2⁡θ
b) -sin⁡θ-cos2⁡⁡θ
c) -sin⁡θ+cos2⁡⁡θ
d) sin⁡θ-cos2⁡⁡θ
View Answer

Answer: d
Explanation: Δ=\(\begin{vmatrix}cos⁡θ&-cos⁡θ&1\\sin^2⁡θ&cos^2⁡θ&1\\sin⁡θ&-sin⁡θ&1\end{vmatrix}\)
Applying C1→C1+C2
Expanding along C1, we get

5. Evaluate \(\begin{vmatrix}b-c&b&c\\a&c-a&c\\a&b&a-b\end{vmatrix}\).
a) 2abc
b) 2a{(b-c)(c-a+b)}
c) 2b{(a-c)(a+b+c)}
d) 2c{(b-c)(a-c+b)}
View Answer

Answer: b
Explanation: Δ=\(\begin{vmatrix}b-c&b&c\\a&c-a&c\\a&b&a-b\end{vmatrix}\)
Applying C2→C2-C3
Applying C1→C1-C2
Applying R2→R2-R3
Expanding along C1, we get

6. If A=\(\begin{bmatrix}1&3\\2&1\end{bmatrix}\), then ________
a) |2A|=4|A|
b) |2A|=2|A|
c) |A|=2|A|
d) |A|=|4A|
View Answer

Answer: a
Explanation: Given that, A=\(\begin{bmatrix}1&3\\2&1\end{bmatrix}\)

7. Evaluate \(\begin{vmatrix}-a&b&c\\-2a+4x&2b-4y&2c+4z\\x&-y&z\end{vmatrix}\).
a) 0
b) abc
c) 2abc
d) -1
View Answer

Answer: a
Explanation: Δ=\(\begin{vmatrix}-a&b&c\\-2a+4x&2b-4y&2c+4z\\x&-y&z\end{vmatrix}\)
Using the properties of determinants, the given determinant can be expressed as a sum of two determinants.
Since two rows are similar in each of the determinants, the determinant is 0.

8. Find the determinant of A=\(\begin{bmatrix}c^2&cb&ca\\ab&a^2&-ac\\ab&bc&-b^2\end{bmatrix}\)
a) abc(a3+b3+c3+abc)
b) abc(a3+b3+c3-abc)
c) abc(a3+b3+c3+abc)
d) (a3-b3+c3-abc)
View Answer

Answer: b
Explanation: Given that, A=\(\begin{bmatrix}c^2&cb&ca\\ab&a^2&-ac\\ab&bc&-b^2\end{bmatrix}\)
Taking c a, b common from R1, R2, R3 respectively, we get

9. Evaluate \(\begin{vmatrix}1+m&n&q\\m&1+n&q\\n&m&1+q\end{vmatrix}\).
a) -1(1+m+n+q)
b) 1+m+n+q
c) 1+2q
d) 1+q
View Answer

Answer: a
Explanation: Given that, Δ=\(\begin{vmatrix}1+m&n&q\\m&1+n&q\\n&m&1+q\end{vmatrix}\)
Applying C1→C1+C2+C3
Applying R1→R2-R1
Expanding along the first row, we get

10. Evaluate \(\begin{vmatrix}4&8&12\\6&12&18\\7&14&21\end{vmatrix}\).
a) 168
b) -1
c) -168
d) 0
View Answer

Answer: d
Explanation: Δ=\(\begin{vmatrix}4&8&12\\6&12&18\\7&14&21\end{vmatrix}\)
Taking 4, 6 and 7 from R1, R2, R3 respectively
Since the elements of all rows are identical, the determinant is zero.

Sanfoundry Global Education & Learning Series – Mathematics – Class 12.

To practice all chapters and topics of class 12 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]

Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.