This set of Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Properties of Determinants”.
1. Which of the following is not a property of determinant?
a) The value of determinant changes if all of its rows and columns are interchanged
b) The value of determinant changes if any two rows or columns are interchanged
c) The value of determinant is zero if any two rows and columns are identical
d) The value of determinant gets multiplied by k, if each element of row or column is multiplied by k
View Answer
Explanation: The value of determinant remains unchanged if all of its rows and columns are interchanged i.e. |A|=|A’|, where A is a square matrix and A’ is the transpose of the matrix A.
2. Find the determinant of the matrix A=\(\begin{bmatrix}1&x&y\\1&x&-y\\1&-x^2&y^2\end{bmatrix}\).
a) (x+1)
b) -2xy(x+1)
c) xy(x+1)
d) 2xy(x+1)
View Answer
Explanation: Given that, A=\(\begin{bmatrix}1&x&y\\1&x&-y\\1&-x^2&y^2\end{bmatrix}\)
Δ=\(\begin{vmatrix}1&x&y\\1&x&-y\\1 &-x^2&y^2 \end{vmatrix}\)
Taking x common C2 and y common from C3, we get
Δ=xy\(\begin{vmatrix}1&1&1\\1&1&-1\\1&-x&y\end{vmatrix}\)
Expanding along R1, we get
Δ=xy{1(y-x)-1(y+1)+1(-x-1)}
Δ=xy(y-x-y-1-x-1)
Δ=xy(-2x-2)=-2xy(x+1).
3. Evaluate \(\begin{vmatrix}x^2&x^3&x^4\\x&y&z\\x^2&x^3&x^4 \end{vmatrix}\).
a) 0
b) 1
c) xyz
d) x2 yz3
View Answer
Explanation: Δ=\(\begin{vmatrix}x^2&x^3&x^4\\x&y&z\\x^2&x^3&x^4 \end{vmatrix}\)
If the elements of any two rows or columns are identical, then the value of determinant is zero. Here, the elements of row 1 and row 3 are identical. Hence, its determinant is 0.
4. Evaluate \(\begin{vmatrix}cosθ&-cosθ&1\\sin^2θ&cos^2θ&1\\sinθ&-sinθ&1\end{vmatrix}\).
a) sinθ+cos2θ
b) -sinθ-cos2θ
c) -sinθ+cos2θ
d) sinθ-cos2θ
View Answer
Explanation: Δ=\(\begin{vmatrix}cosθ&-cosθ&1\\sin^2θ&cos^2θ&1\\sinθ&-sinθ&1\end{vmatrix}\)
Applying C1→C1+C2
Δ=\(\begin{vmatrix}cosθ-cosθ&-cosθ&1\\sin^2θ+cos^2θ&cos^2θ&1\\sinθ-sinθ&-sinθ&1\end{vmatrix}\)=\(\begin{vmatrix}0&-cosθ&1\\1&cos^2θ&1\\0&-sinθ&1\end{vmatrix}\)
Expanding along C1, we get
0-1(cos2θ+sinθ)=sinθ-cos2θ.
5. Evaluate \(\begin{vmatrix}b-c&b&c\\a&c-a&c\\a&b&a-b\end{vmatrix}\).
a) 2abc
b) 2a{(b-c)(c-a+b)}
c) 2b{(a-c)(a+b+c)}
d) 2c{(b-c)(a-c+b)}
View Answer
Explanation: Δ=\(\begin{vmatrix}b-c&b&c\\a&c-a&c\\a&b&a-b\end{vmatrix}\)
Applying C2→C2-C3
Δ=\(\begin{vmatrix}b-c&b-c&c\\a&-a&c\\a&-a&a-b\end{vmatrix}\)
Applying C1→C1-C2
Δ=\(\begin{vmatrix}0&b-c&c\\2a&-a&c\\2a&-a&a-b\end{vmatrix}\)
Applying R2→R2-R3
Δ=\(\begin{vmatrix}0&b-c&c\\0&0&c-a+b\\2a&-a&a-b\end{vmatrix}\)
Expanding along C1, we get
Δ=2a{(b-c)(c-a+b)}
6. If A=\(\begin{bmatrix}1&3\\2&1\end{bmatrix}\), then ________
a) |2A|=4|A|
b) |2A|=2|A|
c) |A|=2|A|
d) |A|=|4A|
View Answer
Explanation: Given that, A=\(\begin{bmatrix}1&3\\2&1\end{bmatrix}\)
2A=2\(\begin{bmatrix}1&3\\2&1\end{bmatrix}\)=\(\begin{bmatrix}2&6\\4&2\end{bmatrix}\)
|2A|=\(\begin{vmatrix}2&6\\4&2\end{vmatrix}\)=(4-24)=-20
4|A|=4\(\begin{vmatrix}1&3\\2&1\end{vmatrix}\)=4(1-6)=4(-5)=-20
∴|2A|=4|A|.
7. Evaluate \(\begin{vmatrix}-a&b&c\\-2a+4x&2b-4y&2c+4z\\x&-y&z\end{vmatrix}\).
a) 0
b) abc
c) 2abc
d) -1
View Answer
Explanation: Δ=\(\begin{vmatrix}-a&b&c\\-2a+4x&2b-4y&2c+4z\\x&-y&z\end{vmatrix}\)
Using the properties of determinants, the given determinant can be expressed as a sum of two determinants.
Δ=\(\begin{vmatrix}-a&b&c\\-2a&2b&2c\\x&-y&z\end{vmatrix}\)+\(\begin{vmatrix}-a&b&c\\4x&-4y&4z\\x&-y&z\end{vmatrix}\)
Δ=2\(\begin{vmatrix}-a&b&c\\-a&b&c\\x&-y&z\end{vmatrix}\)+4\(\begin{vmatrix}-a&b&c\\x&-y&z\\x&-y&z\end{vmatrix}\)
Since two rows are similar in each of the determinants, the determinant is 0.
8. Find the determinant of A=\(\begin{bmatrix}c^2&cb&ca\\ab&a^2&-ac\\ab&bc&-b^2\end{bmatrix}\)
a) abc(a3+b3+c3+abc)
b) abc(a3+b3+c3-abc)
c) abc(a3+b3+c3+abc)
d) (a3-b3+c3-abc)
View Answer
Explanation: Given that, A=\(\begin{bmatrix}c^2&cb&ca\\ab&a^2&-ac\\ab&bc&-b^2\end{bmatrix}\)
Taking c a, b common from R1, R2, R3 respectively, we get
Δ=abc\(\begin{bmatrix}c&b&a\\b&a&-c\\a&c&-b\end{bmatrix}\)
Δ=abc{(c(-ab+c2)-b(-b2+ac)+a(bc-a2)
Δ=abc(-abc+c3+b3-abc+abc-a3)
Δ=abc(a3+b3+c3-abc).
9. Evaluate \(\begin{vmatrix}1+m&n&q\\m&1+n&q\\n&m&1+q\end{vmatrix}\).
a) -1(1+m+n+q)
b) 1+m+n+q
c) 1+2q
d) 1+q
View Answer
Explanation: Given that, Δ=\(\begin{vmatrix}1+m&n&q\\m&1+n&q\\n&m&1+q\end{vmatrix}\)
Applying C1→C1+C2+C3
Δ=\(\begin{vmatrix}1+m+n+q&n&q\\1+m+n+q&1+n&q\\1+m+n+q&m&1+q\end{vmatrix}\)=(1+m+n+q)\(\begin{vmatrix}1&n&q\\1&1+n&q\\1&m&1+q\end{vmatrix}\)
Applying R1→R2-R1
Δ=(1+m+n+q)\(\begin{vmatrix}0&1&0\\1&1+n&q\\1&m&1+q\end{vmatrix}\)
Expanding along the first row, we get
Δ=(1+m+n+q)(0-1(1+q-q)+0)
Δ=-1(1+m+n+q).
10. Evaluate \(\begin{vmatrix}4&8&12\\6&12&18\\7&14&21\end{vmatrix}\).
a) 168
b) -1
c) -168
d) 0
View Answer
Explanation: Δ=\(\begin{vmatrix}4&8&12\\6&12&18\\7&14&21\end{vmatrix}\)
Taking 4, 6 and 7 from R1, R2, R3 respectively
Δ=4×6×7\(\begin{vmatrix}1&2&3\\1&2&3\\1&2&3\end{vmatrix}\)
Since the elements of all rows are identical, the determinant is zero.
Sanfoundry Global Education & Learning Series – Mathematics – Class 12.
To practice all areas of Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Get Free Certificate of Merit in Mathematics - Class 12
- Participate in Mathematics - Class 12 Certification Contest
- Become a Top Ranker in Mathematics - Class 12
- Take Mathematics - Class 12 Tests
- Chapterwise Practice Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Chapterwise Mock Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Practice Class 12 - Biology MCQs
- Practice Class 12 - Physics MCQs
- Buy Class 12 - Mathematics Books
- Practice Class 11 - Mathematics MCQs
- Practice Class 12 - Chemistry MCQs