This set of Class 12 Maths Chapter 2 Multiple Choice Questions & Answers (MCQs) focuses on “Properties of Inverse Trigonometric Functions”.
1. sin-1x in terms of cos-1is ____________
a) cos-1\(\sqrt{1+x^2}\)
b) cos-1\(\sqrt{1-x^2}\)
c) cos-1x
d) cos-1\(\frac{1}{x}\)
View Answer
Explanation: Let sin-1x=y
⇒x=siny
⇒\(x=\sqrt{1-cos^2y}\)
⇒\(x^2=1-cos^2y\)
⇒\(cos^2y=1-x^2\)
∴y=cos-1\(\sqrt{1-x^2}\)=sin-1x.
2. What is sec-1x in terms of tan-1?
a) tan-1\(\sqrt{1+x^2}\)
b) tan-11+x2
c) tan-1x
d) tan-1\(\sqrt{x^2-1}\)
View Answer
Explanation: Let sec-1x=y
⇒x=secy
⇒x=\(\sqrt{1+tan^2y}\)
⇒x2-1=tan2y
∴y=tan-1\(\sqrt{x^2-1}\)=sec-1x.
3. What is the value of cos(tan-1(\(\frac{4}{5}\)))?
a) \(\frac{5}{4}\)
b) \(\frac{5}{\sqrt{41}}\)
c) \(\frac{\sqrt{41}}{5}\)
d) \(\frac{4}{5}\)
View Answer
Explanation: From ∆ABC, we get
tan-1(\(\frac{4}{5}\))=cos-1(\(\frac{5}{\sqrt{41}}\))
cos(tan-1(\(\frac{4}{5}\))=cos(cos-1(\(\frac{5}{\sqrt{41}}\)))
=\(\frac{5}{\sqrt{41}}\)
4. What is the solution of cot(sin-1x)?
a) \(\frac{\sqrt{1-x^2}}{x}\)
b) x
c) \(\sqrt{1-x^2}\)
d) \(\sqrt{1+x^2}\)
View Answer
Explanation: Let sin-1x=y. From ∆ABC, we get
y=sin-1x=cot-1(\(\frac{\sqrt{1-x^2}}{x}\))
∴cot(sin-1x)=\(cot(cot^{-1}(\frac{\sqrt{1-x^2}}{x}))=\frac{\sqrt{1-x^2}}{x}\).
5. Which of the following formula is incorrect?
a) sin-1x+sin-1y=sin-1{\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\)}
b) sin-1x-sin-1y=sin-1{\(x\sqrt{1+y^2}+y\sqrt{1+x^2}\)}
c) 2 tan-1x=tan-1\((\frac{2x}{1-x^2})\)
d) 2 cos-1x=cos-1(3x-4x3)
View Answer
Explanation: The formula sin-1x-sin-1y=sin-1{\(x\sqrt{1+y^2}+y\sqrt{1+x^2}\)} is incorrect. The correct formula is sin-1x-sin-1y=sin-1{\(x\sqrt{1+y^2}-y \sqrt{1-x^2}\)}.
6. Find the value of sin-1(\(\frac{5}{13}\))+cos-1(\(\frac{3}{5}\)).
a) sin-1(\(\frac{63}{65}\))
b) sin-11
c) 0
d) sin-1(\(\frac{64}{65}\))
View Answer
Explanation: From ∆ABC, we get
cos-1\((\frac{3}{5})\)=sin-1\((\frac{4}{5})\)
∴sin-1(\(\frac{5}{13}\))+cos-1(\(\frac{3}{5}\))=sin-1(\(\frac{5}{13}\))+sin-1(\(\frac{4}{5}\))
=sin-1\((\frac{5}{13}\sqrt{1-(\frac{4}{5})^2}+\frac{4}{5}\sqrt{1-(\frac{5}{13})^2})\)
=\(sin^{-1}(\frac{5}{13}×\frac{3}{5}+\frac{4}{5}×\frac{12}{13})=sin^{-1}(\frac{15+48}{65})=sin^{-1}(\frac{63}{65})\).
7. Find the value of tan-1(\(\frac{1}{3}\))+tan-1(\(\frac{1}{5}\))+tan-1(\frac{1}{7})[/latex]
a) tan-1\((\frac{4}{7})\)
b) tan-1\((\frac{9}{7})\)
c) tan-1\((\frac{7}{9})\)
d) tan-11
View Answer
Explanation: Using the formula tan-1x+tan-1y=tan-1\(\frac{x+y}{1-xy}\), we get
tan-1(\(\frac{1}{3}\))+tan-1(\(\frac{1}{5}\))=tan-1\(\bigg(\frac{\frac{1}{3}+\frac{1}{5}}{1-\frac{1}{3}×\frac{1}{5}}\bigg)\)
= \(tan^{-1}\bigg(\frac{\frac{8}{15}}{\frac{14}{15}}\bigg)=tan^{-1}(\frac{8}{15}×\frac{15}{14})=tan^{-1}(\frac{4}{7})\)
=\(tan^{-1}(\frac{1}{3})+tan^{-1}(\frac{1}{5})+tan^{-1}(\frac{1}{7})=tan^{-1}(\frac{4}{7})+tan^{-1}(\frac{1}{7})\)
=\(tan^{-1}\bigg(\frac{\frac{4}{7} + \frac{1}{7}}{1-\frac{4}{7}×\frac{1}{7}}\bigg) = tan^{-1}\bigg(\frac{\frac{5}{7}}{\frac{45}{49}}\bigg)=tan^{-1}(\frac{5}{7}×\frac{49}{45})\)
=tan-1\((\frac{7}{9})\).
8. Find the value of sin-1(\(\frac{3}{5}\))+sin-1(\(\frac{4}{5}\))+cos-1\((\frac{\sqrt{3}}{2})\).
a) \(\frac{π}{3}\)
b) \(\frac{2π}{3}\)
c) \(\frac{4π}{3}\)
d) \(\frac{π}{4}\)
View Answer
Explanation: Using the formula sin-1x+sin-1y=sin-1\({x \sqrt{1-y^2}+y \sqrt{1-x^2}}\), we get
sin-1(\(\frac{3}{5}\))+sin-1(\(\frac{4}{5}\))=sin-1\(\Big\{ \frac{3}{5} \sqrt{1-(\frac{4}{5})^2}+\frac{4}{5} \sqrt{1-(\frac{3}{5})^2} \Big\}\)
=sin-1(\(\frac{3}{5}\)×\(\frac{3}{5}\)+\(\frac{4}{5}\)×\(\frac{4}{5}\))=sin-1\((\frac{25}{25})=\frac{π}{2}\)
∴ sin-1(\(\frac{3}{5}\))+sin-1(\(\frac{4}{5}\))+cos-1\((\frac{\sqrt{3}}{2})=\frac{π}{2}+\frac{π}{6}=\frac{3π+π}{6}=\frac{2π}{3}\).
9. What is the value of 2 tan-1x in terms of sin-1?
a) sec-1x
b) 2 sec-1x
c) 2 sec-1\((\sqrt{1+x^2})\)
d) sec-1\((\sqrt{1+x^2})\)
View Answer
Explanation: Let 2 tan-1x=y
⇒tan-1x=\(\frac{y}{2}\)
From ∆ABC, we get
⇒tan-1x=sec-1\(\sqrt{1+x^2}=\frac{y}{2}\) ⇒y=2 sec-1(\(\sqrt{1+x^2}\))
10. sin-1x+cos1x= ___
a) \(\frac{π}{2}\)
b) π
c) \(\frac{π}{3}\)
d) 2π
View Answer
Explanation: sin-1x+cos-1x=\(\frac{π}{2}\); x∈[-1,1]
Sanfoundry Global Education & Learning Series – Mathematics – Class 12.
To practice all chapters and topics of class 12 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Practice Class 12 - Physics MCQs
- Check Class 12 - Mathematics Books
- Practice Class 12 - Biology MCQs
- Practice Class 11 - Mathematics MCQs
- Practice Class 12 - Chemistry MCQs