Mathematics Questions and Answers – Calculus Application – Maxima and Minima – 1

«
»

This set of Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Calculus Application – Maxima and Minima – 1”.

1. For which value of x will (x – 1)(3 – x) have its maximum?
a) 0
b) 1
c) 2
d) -2
View Answer

Answer: c
Explanation: Let, y = (x – 1)(3 – x) = 4x – x2 – 3
Then, dy/dx = 0
Or 4 – 2x = 0
Or 2x = 4
Or x = 2
Now, [d2y/dx2] = -2 which is negative.
Therefore, (x – 1)(3 – x) will have its maximum at x = 2.
advertisement

2. What will be the values of x for which the value of cosx is minimum?
a) (2m + 1)π
b) (2m)π
c) (2m + 1)π/2
d) (2m – 1)π
View Answer

Answer: a
Explanation: Let, f(x) = cosx
Then, f’(x) = -sinx and f”(x) = -cosx
At an extreme point of f(x), we must have,
f’(x) = 0
Or -sinx = 0
Or x = nπ where, n is any integer.
If n is an odd integer i.e., n = 2m + 1 where m is any integer, then at,
x = (2m + 1)π we have, f”(x) = [(2m + 1)π] = -cos(2mπ + π) = -cosπ = -1(-1) = 1
So, f”(x) is positive at x = (2m + 1)π
Hence, f(x) = cosx is minimum at x = (2m + 1)π.

3. What will be the value of x for which the value of cosx is minimum?
a) 0
b) -1
c) 1
d) Cannot be determined
View Answer

Answer: b
Explanation: Let, f(x) = cosx
Then, f’(x) = -sinx and f”(x) = -cosx
At an extreme point of f(x) we must have,
f’(x) = 0
Or -sinx = 0
Or x = nπ where, n – any integer.
If n is an odd integer i.e., n = 2m + 1 where m is any integer, then at,
x = (2m + 1)π we have, f”(x) = [(2m + 1)π] = -cos(2mπ + π) = -cosπ = -1(-1) = 1
So, f”(x) is positive at x = (2m + 1)π
Hence, f(x) = cosx is minimum at x = (2m + 1)π.
So, the minimum value of cosx is cos(2mπ + π) = cosπ = -1.
advertisement
advertisement

4. What will be the point of maximum of the function 2x3 + 3x2 – 36x + 10?
a) -1
b) -2
c) -3
d) -4
View Answer

Answer: c
Explanation: Let y = 2x3 + 3x2 – 36x + 10 ……….(1)
Differentiating both sides of (1) with respect to x we get,
dy/dx = 6x2 + 6x – 36
And d2y/dx2 = 12x + 6
For maxima or minima value of y, we have,
dy/dx = 0
Or 6x2 + 6x – 36 = 0
Or x2 + x – 6 = 0
Or (x + 3)(x – 2) = 0
Therefore, either x + 3 = 0 i.e., x = -3 or x – 2 = 0 i.e., x = 2
Now, d2y/dx2 = 12x + 6 = 12(-3) + 6 = -30, which is < 0.

5. What will be the point of minimum of the function 2x3 + 3x2 – 36x + 10?
a) 1
b) 2
c) 3
d) 4
View Answer

Answer: b
Explanation: Let y = 2x3 + 3x2 – 36x + 10 ……….(1)
Differentiating both sides of (1) with respect to x we get,
dy/dx = 6x2 + 6x – 36
And d2y/dx2 = 12x + 6
For maxima or minima value of y, we have,
dy/dx = 0
Or 6x2 + 6x – 36 = 0
Or x2 + x – 6 = 0
Or (x + 3)(x – 2) = 0
Therefore, either x + 3 = 0 i.e., x = -3 or x – 2 = 0 i.e., x = 2
Now, d2y/dx2 = 12x + 6 = 12(2) + 6 = 30, which is > 0.
advertisement

6. What will be the maximum value of the function 2x3 + 3x2 – 36x + 10?
a) 71
b) 81
c) 91
d) 0
View Answer

Answer: c
Explanation: Let y = 2x3 + 3x2 – 36x + 10 ……….(1)
Differentiating both sides of (1) with respect to x we get,
dy/dx = 6x2 + 6x – 36
And d2y/dx2 = 12x + 6
For maxima or minima value of y, we have,
dy/dx = 0
Or 6x2 + 6x – 36 = 0
Or x2 + x – 6 = 0
Or (x + 3)(x – 2) = 0
Therefore, either x + 3 = 0 i.e., x = -3 or x – 2 = 0 i.e., x = 2
Now, d2y/dx2 = 12x + 6 = 12(-3) + 6 = -30 < 0
Putting x = -3 in (1) we get its maximum value as,
2x3 + 3x2 – 36x + 10 = 2(-3)3 + 3(-3)2 – 36(-3) + 10
= 91

7. What will be the minimum value of the function 2x3 + 3x2 – 36x + 10?
a) -31
b) 31
c) -34
d) 34
View Answer

Answer: c
Explanation: Let y = 2x3 + 3x2 – 36x + 10 ……….(1)
Differentiating both sides of (1) with respect to x we get,
dy/dx = 6x2 + 6x – 36
And d2y/dx2 = 12x + 6
For maxima or minima value of y, we have,
dy/dx = 0
Or 6x2 + 6x – 36 = 0
Or x2 + x – 6 = 0
Or (x + 3)(x – 2) = 0
Therefore, either x + 3 = 0 i.e., x = -3 or x – 2 = 0 i.e., x = 2
Now, d2y/dx2 = 12x + 6 = 12(2) + 6 = 30 > 0
Putting x = 2 in (1) we get its minimum value as,
2x3 + 3x2 – 36x + 10 = 2(2)3 + 3(2)2 – 36(2) + 10
= -34
advertisement

8. What will be the maxima for the function f(x) = x4 –8x3 + 22x2 –24x + 8?
a) 0
b) 1
c) 2
d) 3
View Answer

Answer: c
Explanation:We have, x4 –8x3 + 22x2 –24x + 8 ……….(1)
Differentiating both sides of (1) with respect to x, we get,
f’(x) = 4x3 – 24x2 + 44x – 24 and f”(x) = 12x2 – 48x + 44 ……….(2)
At an extremum of f(x), we have f’(x) = 0
Or 4x3 – 24x2 + 44x – 24 = 0
Or x2(x – 1) – 5x(x – 1) + 6(x – 1) = 0
Or (x – 1)(x2 – 5x + 6) = 0
Or (x – 1)(x – 2)(x – 3) = 0
So, x = 1, 2, 3
Now, f”(x) = 12x2 – 48x + 44
f”(1) = 8 > 0
f”(2) = -4 < 0
f”(3) = 8 < 0
So, f(x) has maximum at x = 2.

9. What will be the minima for the function f(x) = x4 – 8x3 + 22x2 – 24x + 8?
a) -1
b) 0
c) 2
d) 3
View Answer

Answer: d
Explanation: We have, x4 – 8x3 + 22x2 – 24x + 8 ……….(1)
Differentiating both sides of (1) with respect to x, we get,
f’(x) = 4x3 – 24x2 + 44x – 24 and f”(x) = 12x2 – 48x + 44 ……….(2)
At an extremum of f(x), we have f’(x) = 0
Or 4x3 – 24x2 + 44x – 24 = 0
Or x2(x – 1) – 5x(x – 1) + 6(x – 1) = 0
Or (x – 1)(x2 – 5x + 6) = 0
Or (x – 1)(x – 2)(x – 3) = 0
So, x = 1, 2, 3
Now, f”(x) = 12x2 – 48x + 44
f”(1) = 8 > 0
f”(2) = -4 < 0
f”(3) = 8 < 0
So, f(x) has minimum at x = 1 and 3.
advertisement

10. What is the nature of the function f(x) = 2/3(x3) – 6x2 + 20x – 5?
a) Possess only minimum value
b) Possess only maximum value
c) Does not possess a maximum or minimum value
d) Datainadequate
View Answer

Answer: c
Explanation: We have, f(x) = 2/3(x3) – 6x2 + 20x – 5 ……….(1)
Differentiating both side of (1) with respect to x, we get,
f’(x) = 2x2 – 12x + 20
Now, for a maximum and minimum value of f(x) we have,
f’(x) = 0
Or 2x2 – 12x + 20 = 0
Or x2 – 6x + 10= 0
So, x = [6 ± √(36 – 4*10)]/2
x = (6 ± √-4)/2, which is imaginary.
Hence, f’(x) does not vanishes at any point of x.
Thus, f(x) does not possess a maximum or minimum value.

Sanfoundry Global Education & Learning Series – Mathematics – Class 12.

To practice all areas of Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

advertisement
advertisement
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn | Youtube | Instagram | Facebook | Twitter