This set of Class 12 Maths Chapter 5 Multiple Choice Questions & Answers (MCQs) focuses on “Exponential and Logarithmic Functions”.
1. Differentiate 8e-x+2ex w.r.t x.
a) 2e-x+8ex
b) 2ex+8e-x
c) 2e-x-8ex
d) 2ex-8e-x
View Answer
Explanation: To solve:y=(8e-x+2ex)
Differentiating w.r.t x we get,
\(\frac{dy}{dx}\)=8(-e-x+2ex)
∴\(\frac{dy}{dx}\)=2ex-8e-x.
2. Differentiate 8ecos2x w.r.t x.
a) 16 sin2x ecos2x
b) -16 sin2x ecos2x
c) -16 sin2x e-cos2x
d) 16 sin2x e-cos2x
View Answer
Explanation: Consider y=8ecos2x
Differentiating w.r.t x by using chain rule, we get
\(\frac{dy}{dx}=\frac{d}{dx}\)(8ecos2x)
=8ecos2x\(\frac{d}{dx}\) (cos2x)
=8ecos2x(-sin2x)\(\frac{d}{dx}\) (2x)
=8ecos2x(-sin2x)(2)
∴\(\frac{dy}{dx}\)=-16 sin2x ecos2x
3. Differentiate 3 sin-1(e2x) w.r.t x.
a) \(\frac{6e^2x}{\sqrt{1-e^{4x}}}\)
b) \(\frac{2e^2x}{\sqrt{1-e^{4x}}}\)
c) –\(\frac{6e^2x}{\sqrt{1-e^{4x}}}\)
d) \(\frac{6e^{-2x}}{\sqrt{1-e^{4x}}}\)
View Answer
Explanation: Consider y=3 sin-1(e2x)
\(\frac{dy}{dx}=\frac{d}{dx}\)(3 sin-1(e2x))
\(\frac{dy}{dx}=\left (\frac{3}{\sqrt{1-(e^{2x})^2}}\right )\frac{d}{dx}\)(e2x)
\(\frac{dy}{dx}=\left (\frac{3}{\sqrt{1-(e^{2x})^2}}\right )\)2e2x
∴\(\frac{dy}{dx}\)=\(\frac{6e^{2x}}{\sqrt{1-e^{4x}}}\)
4. Differentiate log(logx5) w.r.t x.
a) –\(\frac{5}{x logx^5}\)
b) \(\frac{1}{logx^5}\)
c) \(\frac{5}{x logx^5}\)
d) –\(\frac{1}{x logx^5}\)
View Answer
Explanation: Consider y=(log(log(x5)))
\(\frac{dy}{dx}=\frac{1}{logx^5} \frac{d}{dx} (logx^5)\)
\(\frac{dy}{dx}=\frac{1}{logx^5}.\frac{1}{x^5}.\frac{d}{dx} (x^5)\)
\(\frac{dy}{dx}=\frac{1}{logx^5}.\frac{1}{x^5}.5x^4\)
∴\(\frac{dy}{dx}=\frac{5}{x logx^5}\)
5. Differentiate 3e3x3 w.r.t x.
a) 27x-2 e3x3
b) 27x2 e3x3
c) -27x2 e3x3
d) -27x-2 e3x3
View Answer
Explanation: Consider y=3e3x3
\(\frac{dy}{dx}\)=\(\frac{d}{dx}\)(3e3x3)
\(\frac{dy}{dx}\)=3e3x3 \(\frac{d}{dx}\)(3x3)
\(\frac{dy}{dx}\)=3e3x3 (3(3x2))
\(\frac{dy}{dx}\)=27x2 e3x3.
6. Differentiate 5ex2 tanx w.r.t x.
a) 5ex2 (1+tanx)2
b) -5ex2 (1+tanx)2
c) 5ex2 (1-tanx)2
d) -5ex2 (1-tanx)2
View Answer
Explanation: Consider y=5ex2 tanx
Differentiating w.r.t x by using chain rule, we get
\(\frac{dy}{dx}\)=tanx \(\frac{d}{dx}\) (5ex2)+5ex2 \(\frac{d}{dx}\) (tanx)
\(\frac{dy}{dx}\)=tanx (5ex2.2x)+5ex2 (sec2x)
\(\frac{dy}{dx}\)=5ex2 (2x tanx+sec2x)
\(\frac{dy}{dx}\)=5ex2 (1+tan2x+2x tanx)
\(\frac{dy}{dx}\)=5ex2 (1+tanx)2
7. Differentiate log(e5x3) w.r.t x.
a) \(\frac{-15x^2}{e^{5x^3}}\)
b) \(\frac{15x^2}{e^{5x^3}}\)
c) 15x2
d) -15x2
View Answer
Explanation: Consider y=log(e5x3)
y=5x3 (∴logex=x)
⇒\(\frac{dy}{dx}\)=\(\frac{d}{dx} (5x^3)\)
∴\(\frac{dy}{dx}=5(3x^2)=15x^2\)
8. Differentiate 7 log(x4.5ex3) w.r.t x.
a) \(\frac{7(4+3x^3)}{x^2}\)
b) \(\frac{7(4-3x^3)}{x}\)
c) –\(\frac{7(4+3x^3)}{x}\)
d) \(\frac{7(4+3x^3)}{x}\)
View Answer
Explanation: Consider y=7 log(x4.5ex3)
y=\(7(logx^4 +log5e^{x^3})\)
y=\(7(4 logx+log5e^{x^3})\)
\(\frac{dy}{dx}=7(4 \frac{d}{dx} (logx)+\frac{d}{dx} (log5e^{x^3}))\)
\(\frac{dy}{dx}=7(\frac{4}{x}+\frac{1}{5e^{x^3}} \frac{d}{dx} (5e^{x^3}))\)
\(\frac{dy}{dx}=7(\frac{4}{x}+\frac{1}{5e^{x^3}}.5e^{x^3}.\frac{d}{dx} {x^3})\)
\(\frac{dy}{dx}=7(\frac{4}{x}+\frac{1}{5e^{x^3}}.5e^{x^3}.3x^2)\)
\(\frac{dy}{dx}=7(\frac{4}{x}+3x^2)\)
∴\(\frac{dy}{dx}=\frac{7(4+3x^3)}{x}\)
9. Differentiate 2ex4 logx w.r.t x.
a) \(\frac{2e^{x^4} (4x^4 logx+1)}{x^2}\)
b) \(\frac{e^{x^4} (4x^4 logx+1)}{x}\)
c) \(\frac{2e^{x^4} (4x^4 logx+1)}{x}\)
d) –\(\frac{2e^{x^4} (4x^4 logx+1)}{x}\)
View Answer
Explanation: Consider y=2ex4 logx
\(\frac{dy}{dx}\)=\(\frac{d}{dx}\) (2ex4 logx)
Differentiating w.r.t x by using chain rule, we get
\(\frac{dy}{dx}\)=2(logx \(\frac{d}{dx} (e^{x^4})+e^{x^4}\frac{d}{dx}\) (logx))
\(\frac{dy}{dx}\)=\(2(logx.e^{x^4}\frac{d}{dx} {x^4}+e^{x^4}.\frac{1}{x})\)
\(\frac{dy}{dx}\)=\(2(logx.e^{x^4}.4x^3+e^{x^4}.\frac{1}{x})\)
\(\frac{dy}{dx}\)=\(2e^{x^4} (4x^3 logx+\frac{1}{x})\)
∴\(\frac{dy}{dx}=\frac{(2e^{x^4} (4x^4 logx+1))}{x}\)
10. Differentiate \(log(cos(sin(e^{x^3})))\) w.r.t x.
a) –\(3x^2 \,e^{x^3} \,cose^{x^3} \,tan(sine^{x^3})\)
b) \(3x^2 \,e^{x^3} \,cose^{x^3} \,tan(sine^{x^3})\)
c) –\(3e^{x^3} \,cose^{x^3} \,cos(sine^{x^3})\)
d) –\(x^2 e^{x^3} \,cose^{x^3} \,tan(sine^{x^3})\)
View Answer
Explanation: Consider y=\(log(cos(sin(e^{x^3})))\)
Differentiating w.r.t x by using chain rule, we get
\(\frac{dy}{dx}\)=\(\frac{d}{dx} (log(cos(sin(e^{x^3}))))\)
\(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} \frac{d}{dx} (cos(sine^{x^3})))\)
\(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} (-sin(sine^{x^3}) \frac{d}{dx}(sine^{x^3})))\)
\(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} (-sin(sine^{x^3})(cose^{x^3}) \frac{d}{dx} (e^{x^3})))\)
\(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} (-sin(sine^{x^3})(cose^{x^3})(e^{x^3}) \frac{d}{dx} {x^3}))\)
\(\frac{dy}{dx}\)=\((\frac{1}{cos(sine^{x^3})} (-sin(sine^{x^3}).cose^{x^3} .e^{x^3}.3x^2)\)
\(\frac{dy}{dx}\)=-\((\frac{3x^2 e^{x^3} cose^{x^3} sin(sine^{x^3})}{cos(sine^{x^3})})\)
\(\frac{dy}{dx}\)=-\(3x^2 e^{x^3} cose^{x^3} tan(sine^{x^3})\)
Sanfoundry Global Education & Learning Series – Mathematics – Class 12.
To practice all chapters and topics of class 12 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]
- Practice Class 12 - Chemistry MCQs
- Practice Class 12 - Biology MCQs
- Practice Class 12 - Physics MCQs
- Check Class 12 - Mathematics Books
- Practice Class 11 - Mathematics MCQs