This set of Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Derivatives Application – Approximations”.
1. Find the approximate value of \(\sqrt{64.3}\).
a) 8.0675
b) 8.03465
c) 8.01875
d) 8.0665
View Answer
Explanation: Let y=\(\sqrt{x}\). Let x=64 and Δx=0.3
Then, Δy=\(\sqrt{x+Δx}-\sqrt{x}\)
Δy=\(\sqrt{64.3}-\sqrt{64}\)
\(\sqrt{64.3}\)=Δy+8
dy is approximately equal to Δy is equal to:
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{2\sqrt{x}}\).Δx
dy=\(\frac{1}{2\sqrt{64}}\) (0.3)
dy=0.3/16=0.01875
∴ The approximate value of \(\sqrt{64.3}\) is 8+0.01875=8.01875
2. Find the approximate value of \(\sqrt{49.1}\).
a) 7.0142
b) 7.087942
c) 7.022
d) 7.00714
View Answer
Explanation: Let y=\(\sqrt{49.1}\). Let x=49 and Δx=0.1
Then, Δy=\(\sqrt{x+Δx}-\sqrt{x}\)
Δy=\(\sqrt{49.1}-\sqrt{49}\)
\(\sqrt{49.1}\)=Δy+7
dy is approximately equal to Δy is equal to
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{(2\sqrt{x})}\).Δx
dy=\(\frac{1}{(2\sqrt{49})}\) (0.1)
dy=0.1/14=0.00714
∴ The approximate value of \(\sqrt{49.1}\) is 7+0.00714=7.00714
3. Find the approximate value of f(5.03), where f(x)=4x2-7x+2.
a) 67.99
b) 56.99
c) 67.66
d) 78.09
View Answer
Explanation: Let x=5 and Δx=0.03
Then, f(x+Δx)=4(x+Δx)2-7(x+Δx)+2
Δy=f(x+Δx)-f(x)
∴f(x+Δx)=Δy+f(x)
Δy=f’ (x)Δx
⇒f(x+Δx)=f(x)+f’ (x)Δx
f(5.03)=(4(5)2-7(5)+2)+(8(5)-7)(0.03) (∵f’ (x)=8x-7)
f(5.03)=(100-35+2)+(40-7)(0.03)
f(5.03)=67+33(0.03)
f(5.03)=67+0.99=67.99
4. Find the approximate value of \(\sqrt{11}\).
a) 3.34
b) 3.934
c) 3.0034
d) 3.544
View Answer
Explanation: Let y=\(\sqrt{x}\). Let x=9 and Δx=2
Then, Δy=\(\sqrt{x+Δx}-\sqrt{x}\)
Δy=\(\sqrt{11}-\sqrt{9}\)
\(\sqrt{11}\)=Δy+3
dy is approximately equal to Δy is equal to
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{(2\sqrt{x})}\).Δx
dy=\(\frac{1}{(2\sqrt{9})}(2)\)
dy=2/6=0.34
∴ The approximate value of \(\sqrt{11}\) is 3+0.34=3.34.
5. What will be the approximate change in the surface area of a cube of side xm caused by increasing the side by 2%.
a) 0.24x
b) 2.4x2
c) 0.4x2
d) 0.24x2
View Answer
Explanation: Let the edge of the cube be x. Given that dx or Δx is equal to 0.02x(2%).
The surface area of the cube is A=6x2
Differentiating w.r.t x, we get
\(\frac{dA}{dx}\)=12x
dA=(\(\frac{dA}{dx}\))Δx=12x(0.02x)=0.24x2
Hence, the approximate change in volume is 0.24x2.
6. Find the approximate value of f(4.04), where f(x)=7x3+6x2-4x+3.
a) 346.2
b) 544.345
c) 546.2
d) 534.2
View Answer
Explanation: Let x=4 and Δx=0.04
Then, f(x+Δx)=7(x+Δx)3+7(x+Δx)2-4(x+Δx)+3
Δy=f(x+Δx)-f(x)
∴f(x+Δx)=Δy+f(x)
Δy=f'(x)Δx
⇒f(x+Δx)=f(x)+f’ (x)Δx
Here, f'(x)=21x2+12x-4
f(4.04)=(7(4)3+6(4)2-4(4)+3)+(21(4)2+12(4)-4)(0.04)
f(4.04)=(448+96-16+3)+(336+48-4)(0.04)
f(4.04)=531+380(0.04)=546.2
7. Find the approximate value of (127)1/3.
a) 5.0267
b) 2.0267
c) 8.0267
d) 5.04
View Answer
Explanation: Let y=(x)1/3. Let x=125 and Δx=2
Then, Δy=(x+Δx)1/3-x1/3
Δy=(127)1/3-(125)1/3
(127)1/3=Δy+5
dy is approximately equal to Δy is equal to
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{3x^{2/3}}\).Δx
dy=\(\frac{1}{3×125^{2/3}} (2)\)
dy=2/75=0.0267
∴ The approximate value of (127)1/3 is 5+0.0267=5.0267
8. Find the approximate change in the volume of cube of side xm caused by increasing the side by 6%.
a) 0.18x
b) 0.18x3
c) 0.18x2
d) 1.8x3
View Answer
Explanation: We know that the volume V of a cube is given by
V=x3
Differentiating w.r.t x, we get
\(\frac{dV}{dx}\)=3x2
dV=(\(\frac{dV}{dx}\))Δx=3x2 Δx
dV=3x2 (6x/100)=0.18x3
Therefore, the approximate change in volume is 0.18x3.
9. Find the approximate value of (82)1/4.
a) 3.025
b) 3.05
c) 3.00925
d) 3.07825
View Answer
Explanation: Let y=x1/4. Let x=81 and Δx=1
Then, Δy=(x+Δx)1/4-x1/4
Δy=821/4-811/4
821/4=Δy+3
dy is approximately equal to Δy is equal to
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{(4x^{3/4})}\).Δx
dy=\(\frac{1}{(4×81^{3/4})} (1)\)
dy=\(\frac{1}{(4×27)}\)=0.00925
∴ The approximate value of 821/4 is 3+0.00925=3.00925
10. Find the approximate error in the volume of the sphere if the radius of the sphere is measured to be 6cm with an error of 0.07cm.
a) 10.08π cm3
b) 10.08cm3
c) 10.4πcm3
d) 9.08cm3
View Answer
Explanation: Let x be the radius of the sphere.
Then, x=6cm and Δx=0.07cm
The volume of a sphere is given by V=\(\frac{4}{3}\) πx3
∴\(\frac{dV}{dx}=\frac{4}{3}\) π(3x2)=4πx2
dV=(\(\frac{dV}{dx}\))Δx=4πx2 Δx
dV=4×π×62×0.07
dV=10.08π cm3
Sanfoundry Global Education & Learning Series – Mathematics – Class 12.
To practice all areas of Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Get Free Certificate of Merit in Mathematics - Class 12
- Participate in Mathematics - Class 12 Certification Contest
- Become a Top Ranker in Mathematics - Class 12
- Take Mathematics - Class 12 Tests
- Chapterwise Practice Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Chapterwise Mock Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Practice Class 11 - Mathematics MCQs
- Practice Class 12 - Chemistry MCQs
- Practice Class 12 - Biology MCQs
- Buy Class 12 - Mathematics Books
- Practice Class 12 - Physics MCQs