Mathematics Questions and Answers – Derivatives Application – Approximations

«
»

This set of Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Derivatives Application – Approximations”.

1. Find the approximate value of \(\sqrt{64.3}\).
a) 8.0675
b) 8.03465
c) 8.01875
d) 8.0665
View Answer

Answer: c
Explanation: Let y=\(\sqrt{x}\). Let x=64 and Δx=0.3
Then, Δy=\(\sqrt{x+Δx}-\sqrt{x}\)
Δy=\(\sqrt{64.3}-\sqrt{64}\)
\(\sqrt{64.3}\)=Δy+8
dy is approximately equal to Δy is equal to:
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{2\sqrt{x}}\).Δx
dy=\(\frac{1}{2\sqrt{64}}\) (0.3)
dy=0.3/16=0.01875
∴ The approximate value of \(\sqrt{64.3}\) is 8+0.01875=8.01875
advertisement

2. Find the approximate value of \(\sqrt{49.1}\).
a) 7.0142
b) 7.087942
c) 7.022
d) 7.00714
View Answer

Answer: d
Explanation: Let y=\(\sqrt{49.1}\). Let x=49 and Δx=0.1
Then, Δy=\(\sqrt{x+Δx}-\sqrt{x}\)
Δy=\(\sqrt{49.1}-\sqrt{49}\)
\(\sqrt{49.1}\)=Δy+7
dy is approximately equal to Δy is equal to
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{(2\sqrt{x})}\).Δx
dy=\(\frac{1}{(2\sqrt{49})}\) (0.1)
dy=0.1/14=0.00714
∴ The approximate value of \(\sqrt{49.1}\) is 7+0.00714=7.00714

3. Find the approximate value of f(5.03), where f(x)=4x2-7x+2.
a) 67.99
b) 56.99
c) 67.66
d) 78.09
View Answer

Answer: a
Explanation: Let x=5 and Δx=0.03
Then, f(x+Δx)=4(x+Δx)2-7(x+Δx)+2
Δy=f(x+Δx)-f(x)
∴f(x+Δx)=Δy+f(x)
Δy=f’ (x)Δx
⇒f(x+Δx)=f(x)+f’ (x)Δx
f(5.03)=(4(5)2-7(5)+2)+(8(5)-7)(0.03) (∵f’ (x)=8x-7)
f(5.03)=(100-35+2)+(40-7)(0.03)
f(5.03)=67+33(0.03)
f(5.03)=67+0.99=67.99
advertisement
advertisement

4. Find the approximate value of \(\sqrt{11}\).
a) 3.34
b) 3.934
c) 3.0034
d) 3.544
View Answer

Answer: a
Explanation: Let y=\(\sqrt{x}\). Let x=9 and Δx=2
Then, Δy=\(\sqrt{x+Δx}-\sqrt{x}\)
Δy=\(\sqrt{11}-\sqrt{9}\)
\(\sqrt{11}\)=Δy+3
dy is approximately equal to Δy is equal to
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{(2\sqrt{x})}\).Δx
dy=\(\frac{1}{(2\sqrt{9})}(2)\)
dy=2/6=0.34
∴ The approximate value of \(\sqrt{11}\) is 3+0.34=3.34.

5. What will be the approximate change in the surface area of a cube of side xm caused by increasing the side by 2%.
a) 0.24x
b) 2.4x2
c) 0.4x2
d) 0.24x2
View Answer

Answer: d
Explanation: Let the edge of the cube be x. Given that dx or Δx is equal to 0.02x(2%).
The surface area of the cube is A=6x2
Differentiating w.r.t x, we get
\(\frac{dA}{dx}\)=12x
dA=(\(\frac{dA}{dx}\))Δx=12x(0.02x)=0.24x2
Hence, the approximate change in volume is 0.24x2.
advertisement

6. Find the approximate value of f(4.04), where f(x)=7x3+6x2-4x+3.
a) 346.2
b) 544.345
c) 546.2
d) 534.2
View Answer

Answer: c
Explanation: Let x=4 and Δx=0.04
Then, f(x+Δx)=7(x+Δx)3+7(x+Δx)2-4(x+Δx)+3
Δy=f(x+Δx)-f(x)
∴f(x+Δx)=Δy+f(x)
Δy=f'(x)Δx
⇒f(x+Δx)=f(x)+f’ (x)Δx
Here, f'(x)=21x2+12x-4
f(4.04)=(7(4)3+6(4)2-4(4)+3)+(21(4)2+12(4)-4)(0.04)
f(4.04)=(448+96-16+3)+(336+48-4)(0.04)
f(4.04)=531+380(0.04)=546.2

7. Find the approximate value of (127)1/3.
a) 5.0267
b) 2.0267
c) 8.0267
d) 5.04
View Answer

Answer: a
Explanation: Let y=(x)1/3. Let x=125 and Δx=2
Then, Δy=(x+Δx)1/3-x1/3
Δy=(127)1/3-(125)1/3
(127)1/3=Δy+5
dy is approximately equal to Δy is equal to
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{3x^{2/3}}\).Δx
dy=\(\frac{1}{3×125^{2/3}} (2)\)
dy=2/75=0.0267
∴ The approximate value of (127)1/3 is 5+0.0267=5.0267
advertisement

8. Find the approximate change in the volume of cube of side xm caused by increasing the side by 6%.
a) 0.18x
b) 0.18x3
c) 0.18x2
d) 1.8x3
View Answer

Answer: b
Explanation: We know that the volume V of a cube is given by
V=x3
Differentiating w.r.t x, we get
\(\frac{dV}{dx}\)=3x2
dV=(\(\frac{dV}{dx}\))Δx=3x2 Δx
dV=3x2 (6x/100)=0.18x3
Therefore, the approximate change in volume is 0.18x3.

9. Find the approximate value of (82)1/4.
a) 3.025
b) 3.05
c) 3.00925
d) 3.07825
View Answer

Answer: c
Explanation: Let y=x1/4. Let x=81 and Δx=1
Then, Δy=(x+Δx)1/4-x1/4
Δy=821/4-811/4
821/4=Δy+3
dy is approximately equal to Δy is equal to
dy=\(\frac{dy}{dx}\)Δx
dy=\(\frac{1}{(4x^{3/4})}\).Δx
dy=\(\frac{1}{(4×81^{3/4})} (1)\)
dy=\(\frac{1}{(4×27)}\)=0.00925
∴ The approximate value of 821/4 is 3+0.00925=3.00925
advertisement

10. Find the approximate error in the volume of the sphere if the radius of the sphere is measured to be 6cm with an error of 0.07cm.
a) 10.08π cm3
b) 10.08cm3
c) 10.4πcm3
d) 9.08cm3
View Answer

Answer: a
Explanation: Let x be the radius of the sphere.
Then, x=6cm and Δx=0.07cm
The volume of a sphere is given by V=\(\frac{4}{3}\) πx3
∴\(\frac{dV}{dx}=\frac{4}{3}\) π(3x2)=4πx2
dV=(\(\frac{dV}{dx}\))Δx=4πx2 Δx
dV=4×π×62×0.07
dV=10.08π cm3

Sanfoundry Global Education & Learning Series – Mathematics – Class 12.

To practice all areas of Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

advertisement
advertisement
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn | Youtube | Instagram | Facebook | Twitter