This set of Mathematics MCQs for Engineering Entrance Exams focuses on “Methods of Integration-2”.
1. Integrate 2 sin2x+cos2x.
a) \(\frac{3x}{2}+\frac{sin2x}{4}+C\)
b) \(\frac{3x}{2}-\frac{sin2x}{4}+C\)
c) \(\frac{x}{2}+\frac{sin2x}{4}+C\)
d) \(\frac{3x}{4}-\frac{2sin2x}{2}+C\)
View Answer
Explanation: \(\int \,2 \,sin^2x +cos^2x=\int sin^2x+sin^2x+cos^2x dx\)
=\(\int sin^2x+1 dx\)
=\(\int sin^2x dx+\int 1 dx\)
=\(\int \frac{1-cos2x}{2} dx+\int 1 dx\)
=\(\frac{x}{2}-\frac{sin2x}{4}+x\)
=\(\frac{3x}{2}-\frac{sin2x}{4}+C\)
2. Integrate 8 tan3x sec2x.
a) 2 tan4x+C
b) 4 cot4x+C
c) 2 tan3x+C
d) tan4x+C
View Answer
Explanation: To find: \(\int 8 \,tan^3x \,sec^2x \,dx\)
Let tanx=t
sec2x dx=dt
∴\(\int 8 \,tan^3x \,sec^2x \,dx=\int 8 \,t^3 \,dt=\frac{8t^4}{4}=2t^4\)
Replacing t with tanx, we get
\(\int 8 tan^3x sec^2x dx=2 tan^4x+C\)
3. Find the integral of \(\frac{cos^2x-sin^2x}{7 cos^2x sin^2x}\).
a) –\(\frac{1}{7}\) (cotx-tanx)+C
b) –\(\frac{1}{7}\) (cotx-2 tanx)+C
c) –\(\frac{1}{7}\) (cotx+tanx)+C
d) –\(\frac{1}{7}\) (2 cotx+3 tanx)+C
View Answer
Explanation: To find: \(\int \frac{cos^2x-sin^2x}{7 \,cos^2x \,sin^2x} dx\)
\(\int \frac{cos^2x-sin^2x}{7 \,cos^2x \,sin^2x} dx=\frac{1}{7} \int \frac{1}{sin^2x}-\frac{1}{cos^2x} dx\)
=\(\frac{1}{7} \int cosec^2 x-sec^2x dx\)
=\(\frac{1}{7}\) (-cotx-tanx)+C
=-\(\frac{1}{7}\) (cotx+tanx)+C.
4. Find \(\int sin^2(8x+5) dx\)
a) \(\frac{x}{4}+\frac{sin(16x+10)}{32}+C\)
b) \(\frac{x}{2}-\frac{cos(16x+10)}{32}+C\)
c) \(\frac{x}{2}-\frac{sin(16x+10)}{32}+C\)
d) \(\frac{x}{2}+\frac{cos(16x+5)}{32}+C\)
View Answer
Explanation: \(\int sin^2(8x+5) dx=\int \frac{1-cos2(8x+5)}{2} dx=\int \frac{1}{2} dx-\frac{1}{2} \int cos(16x+10)dx\)
=\(\frac{x}{2}-\frac{1}{2} (\frac{sin(16x+10)}{16})=\frac{x}{2}-\frac{sin(16x+10)}{32}+C\)
5. Find \(\int \frac{5 cos^2x}{1+sinx} dx\).
a) -3(x+cosx)+C
b) 5(x+cosx)+C
c) 5(-x+sinx)+C
d) 5(x-cosx)+C
View Answer
Explanation: \(\int \frac{5 cos^2x}{1+sinx} dx=\int \frac{5(1-sin^2x)}{1+sinx}=5\int \frac{(1+sinx)(1-sinx)}{(1+sinx)} dx\)
=5∫ (1-sinx)dx
=5(x-(-cosx))=5(x+cosx)+C
6. Find the integral of \(\frac{e^{-x} (1-x)}{sin^2(xe^{-x})}\).
a) cotxe-x+C
b) -cotxe-x+C
c) -cotxex+C
d) -cos2xe-x+C
View Answer
Explanation: \(\int \frac{e^{-x} (1-x)}{sin^2(xe^{-x})} dx\)
Let xe-x=t
Differentiating w.r.t x, we get
\(-xe^{-x}+e^{-x} dx=dt\)
e-x (1-x)dx=dt
\(\int \frac{e^{-x} (1-x)}{sin^2(xe^{-x})} dx=\int \frac{dt}{sin^2t}\)
=\(\int cosec^2 \,t \,dt\)
=-cott+C
Replacing t with xe-x, we get
\(\int \frac{e^{-x} (1-x)}{sin^2(xe^{-x})} dx=-cotxe^{-x}+C\).
7. Integrate \(\frac{2 cos2x}{(cosx-sinx)^2}\).
a) -log(1+2sin2x)+C
b) \(\frac{1}{4}\) log(1-sin2x)+C
c) –\(\frac{1}{4}\) log(1+cos2x)+C
d) -log(1-sin2x)+C
View Answer
Explanation: \(\int \frac{2 cos2x}{(cosx-sinx)^2} dx=\int \frac{2 cos2x}{cos^2x+sin^2x-sin2x} \,dx \,(∵2 cosx sinx=sin2x)\)
=\(\int \frac{2 cos2x}{1-sin2x} dx\)
Let 1-sin2x=t
Differentiating w.r.t x, we get
-2 cos2x dx=dt
2 cos2x dx=-dt
\(\int \frac{2 cos2x}{(cosx-sinx)^2} dx=-\int \frac{dt}{t}\)
=-logt
Replacing t with 1-sin2x, we get
∴\(\int \frac{2 cos2x}{(cosx-sinx)^2}\) dx=-log(1-sin2x)+C
8. Integrate sin3(x+2).
a) \(\frac{3}{4} \,(sin(x+2))+\frac{1}{12} \,cos(3x+6)+C\)
b) –\(\frac{3}{4} \,(cos(x+2))-\frac{1}{5} \,cos(3x+6)+C\)
c) –\(\frac{3}{4} \,(cos(x+2))+\frac{1}{12} \,cos(3x+6)+C\)
d) –\(\frac{3}{4} \,(cos(x+2))+\frac{1}{12} \,sin(x+2)+C\)
View Answer
Explanation: To find: ∫ 3 sin3(x+2) dx
We know that, sin3x=3 sinx-4 sin3x
∴sin3x=\(\frac{3 sinx-sin3x}{4}\)
sin3(x+2)=\(\frac{(3 sin(x+2)-sin(3x+6))}{4}\)
\(\int sin^3(x+2) \,dx=\frac{3}{4} \int sin(x+2) \,dx-\frac{1}{4} \int \,sin(3x+6) \,dx\)
=-\(\frac{3}{4} \,(cos(x+2))+\frac{1}{12} \,cos(3x+6)+C\)
9. Integrate 2x cos(x2+3).
a) sin(x2+3)+C
b) sin2(x2+3)+C
c) cot(x2+3)+C
d) -sin(x2+3)+C
View Answer
Explanation: ∫ 2x cos(x2+3) dx
Let x2+3=t
Differentiating w.r.t x, we get
2x dx=dt
∫ 2x cos(x2+3) dx=∫ cost dt
=sint+C
Replacing w.r.t x, we get
∴∫ 2x cos(x2+3) dx=sin(x2+3)+C
10. Find ∫ 2 sin3x+1 dx
a) \(\frac{3}{2}-\frac{cos3x}{6}+x+C\)
b) –\(\frac{3}{2} cosx+\frac{cos3x}{6}+x+C\)
c) –\(\frac{3}{2} cosx-\frac{cos3x}{6}-x+C\)
d) –\(\frac{3}{2} cosx+\frac{cos3x}{6}+C\)
View Answer
Explanation: We know that, sin3x=3 sinx-4 sin3x
∴sin3x=\(\frac{3 sinx-sin3x}{4}\)
\(\int 2 \,sin^3x+1 \,dx=\int \frac{(3 sinx-sin3x)}{2} dx+\int dx\)
=\(\frac{3}{2} \int sinx dx-\frac{1}{2} \int sin3x dx+\int dx\)
=-\(\frac{3}{2} cosx+\frac{cos3x}{6}+x+C\)
Sanfoundry Global Education & Learning Series – Mathematics – Class 12.
To practice Mathematics MCQs for Engineering Entrance Exams, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Get Free Certificate of Merit in Mathematics - Class 12
- Participate in Mathematics - Class 12 Certification Contest
- Become a Top Ranker in Mathematics - Class 12
- Take Mathematics - Class 12 Tests
- Chapterwise Practice Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Chapterwise Mock Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Buy Class 12 - Mathematics Books
- Practice Class 11 - Mathematics MCQs
- Practice Class 12 - Biology MCQs
- Practice Class 12 - Physics MCQs
- Practice Class 12 - Chemistry MCQs