This set of Class 12 Maths Chapter 7 Multiple Choice Questions & Answers (MCQs) focuses on “Integrals”. These MCQs are created based on the latest CBSE syllabus and the NCERT curriculum, offering valuable assistance for exam preparation.
1. Find the integral of \(8x^3+1\).
a) 2x4+x+C
b) 2x6-5x+C
c) 2x4-x+C
d) 2x4+x2 C
View Answer
Explanation: \(\int \,8x^{3+1} \,dx\)
Using \(\int \,x^n \,dx=\frac{x^{n+1}}{n+1}\), we get
\(\int \,8x^{3+1} \,dx=\int 8x^3 \,dx+\int \,1 \,dx\)
=\(\frac{8x^{3+1}}{3+1}+x\)
=\(\frac{8x^4}{4}+x\)
=2x4+x+C.
2. Find ∫ 7x2-x3+2x dx.
a) \(\frac{7x^3}{3}+\frac{x^4}{5}-\frac{2x^2}{2}+C\)
b) \(\frac{7x^3}{3}+\frac{x^4}{4}+\frac{2x^2}{2}+C\)
c) \(\frac{7x^5}{9}-\frac{x^4}{4}+\frac{2x^2}{2}+C\)
d) \(\frac{7x^3}{3}-\frac{x^4}{4}+x^2+C\)
View Answer
Explanation: To find \(\int 7x^2-x^3+2x dx\)
\(\int 7x^2-x^3+2x dx=\int 7x^2 dx-\int x^3 dx+2\int x dx\)
Using \(\int x^n dx=\frac{x^{n+1}}{n+1}\), we get
\(\int 7x^2-x^3+2x dx=\frac{7x^{2+1}}{2+1}-\frac{x^{3+1}}{3+1}+2(\frac{x^{1+1}}{1+1})\)
∴\(\int 7x^2-x^3+2x dx=\frac{7x^3}{3}-\frac{x^4}{4}+x^2+C\)
3. Find the integral of 2 sin2x+3.
a) sin2x+3x+C
b) -cos2x-3x3+C
c) -cos2x+3x+C
d) cos2x-3x+12+C
View Answer
Explanation: To find ∫ 2 sin2x+3 dx
\(\int \,2 \,sin2x+3 \,dx=\int \,2 \,sin2x \,dx + \int \,3 \,dx\)
\(\int \,2 \,sin2x+3 \,dx=2\int \,sin2x \,dx+3\int \,dx\)
\(\int \,2 \,sin2x+3 \,dx=\frac{-2 cos2x}{2}+3x\)
∴∫2 sin2x+3 dx=-cos2x+3x+C
4. Find the integral of \(\int 3e^x+\frac{2}{x}+x^3 dx\).
a) \(3e^3x+\frac{2}{x}-\frac{x^4}{4}+c\)
b) \(3e^x+2 \,logx+\frac{x^4}{4}+c\)
c) \(e^x+2 \,logx+\frac{x^4}{4}+c\)
d) \(3e^x-\frac{2}{x^2}+\frac{x^4}{4}+c\)
View Answer
Explanation: To find \(\int \,3e^x+\frac{2}{x}+x^3 \,dx\)
\(\int \,3e^x+\frac{2}{x}+x^3 dx=3\int \,e^x \,dx+2\int \frac{1}{x} \,dx+\int x^3 \,dx\)
\(\int \,e^x \,dx=e^x\)
\(\int \frac{1}{x} dx=logx\)
∴\(\int 3e^x+\frac{2}{x}+x^3 \,dx=3e^x+2 \,logx+\frac{x^4}{4}+c\)
5. Find the integral of \(\frac{4x^4-3x^2}{x^3}\).
a) 7x2-3 logx3+C
b) 2x2-3 logx+C
c) x2-logx+C
d) 2x2+3 logx+C
View Answer
Explanation: To find \(\int \frac{4x^4-3x^2}{x^3} dx\)
\(\int \frac{4x^4-3x^2}{x^3} \,dx=\int \frac{4x^4}{x^3} – \frac{3x^2}{x^3} \,dx\)
\(\int \frac{4x^4-3x^2}{x^3} \,dx=\int 4x dx-\int \frac{3}{x} dx\)
\(\int \frac{4x^4-3x^2}{x^3} \,dx=\frac{4x^2}{2}-3 logx\)
∴ \(\int \frac{4x^4-3x^2}{x^3} \,dx=2x^2-3 \,logx+C\).
6. Find \(\int \,3 \,cosx+\frac{1}{x} dx\).
a) \(3 \,sinx-\frac{1}{x}+C\)
b) \(2 \,sinx+\frac{1}{x^3}+C\)
c) \(3 \,sin3x+\frac{1}{x}+C\)
d) \(sinx-\frac{1}{x^2}+C\)
View Answer
Explanation: To find \(\int \,3 \,cosx+\frac{1}{x^2} dx\)
\(\int \,3 \,cosx+\frac{1}{x^2} dx=3 \int cosx \,dx+\int \frac{1}{x^2} \,dx\)
\(\int \,3 \,cosx+\frac{1}{x^2} dx=3 \,sinx+\int x^{-2} \,dx\)
\(\int \,3 \,cosx+\frac{1}{x^2} dx=3 \,sinx+\frac{x^{-2+1}}{-2+1}\)
\(\int \,3 \,cosx+\frac{1}{x^2} dx=3 \,sinx-\frac{1}{x}+C\)
7. Find \(\int (2+x)x\sqrt{x} dx\).
a) \(\frac{4x^{5/2}}{5}+\frac{2x^{7/2}}{9}+C\)
b) \(\frac{4x^{5/2}}{5}-\frac{2x^{7/2}}{7}+C\)
c) \(\frac{4x^{5/2}}{6}+\frac{2x^{7/2}}{7}+C\)
d) –\(\frac{4x^{5/2}}{5}+\frac{2x^{7/2}}{7}+C\)
View Answer
Explanation: To find \(\int (2+x)x\sqrt{x} dx\)
\(\int \,(2+x)x\sqrt{x} \,dx=\int \,2x\sqrt{x}+x^{5/2} \,dx\)
\(\int \,(2+x)x\sqrt{x} \,dx=\int \,2x^{3/2} dx + \int x^{5/2} dx\)
\(\int \,(2+x)x\sqrt{x} \,dx=\frac{2x^{3/2+1}}{3/2+1}+\frac{x^{5/2+1}}{5/2+1}\)
\(\int \,(2+x)x\sqrt{x} \,dx=\frac{4x^{5/2}}{5}+\frac{2x^{7/2}}{7}+C\)
8. Find \(\int \,7x^8-4e^{2x}-\frac{2}{x^2} \,dx\).
a) \(\frac{7x^4}{4}-2e^{2x}+\frac{2}{x}+C\)
b) \(\frac{7x^4}{4}+2e^{2x}+\frac{2}{x}+C\)
c) \(\frac{7x^4}{4}-2e^{2x} \frac{2}{x^2}+C\)
d) \(\frac{7x^4}{8}+2e^{2x}-\frac{4}{x}+C\)
View Answer
Explanation: To find:\(\int 7x^8-4e^{2x}-\frac{2}{x^2} dx\)
\(\int \,7x^8-4e^{2x}-\frac{2}{x^2} \,dx=\int 7x^9 dx-4\int e^{2x} dx-2\int \frac{1}{x}^2 dx\)
\(\int \,7x^8-4e^{2x}-\frac{2}{x^2} \,dx=\frac{7x^{9+1}}{9+1}-\frac{4e^{2x}}{2}-\frac{2x^{-2+1}}{-2+1}\)
∴\(\int \,7x^8-4e^{2x}-\frac{2}{x^2} dx=\frac{7x^{10}}{10}-2e^{2x}+\frac{2}{x}+C\)
9. Find the integral \(\int sin2x+e^3x-cos3x dx\).
a) –\(\frac{sin2x}{2}+\frac{e^{3x}}{3}-\frac{sin3x}{3}+C\)
b) –\(\frac{cos2x}{2}+\frac{e^{3x}}{3}-\frac{sin3x}{3}+C\)
c) \(\frac{cos2x}{2}+\frac{e^{3x}}{3}-\frac{cos3x}{3}+C\)
d) –\(\frac{cos2x}{2}-\frac{e^{3x}}{3}+\frac{cos3x}{3}+C\)
View Answer
Explanation: To find \(\int \,sin2x+e^{3x}-cos3x \,dx\)
\(\int sin2x+e^{3x}-cos3x \,dx=\int \,sin2x \,dx+\int \,e^{3x} \,dx-\int \,cos3x \,dx\)
\(\int sin2x+e^{3x}-cos3x \,dx=-\frac{cos2x}{2}+\frac{e^{3x}}{3}-\frac{sin3x}{3}+C\)
10. Find the integral of (ax2+b)2.
a) \(\frac{a^2 \,x^5}{5}+b^2 \,x+\frac{2abx^3}{3}+C\)
b) –\(\frac{a^2 \,x^5}{5}-b^2 \,x+\frac{2abx^3}{3}+C\)
c) \(\frac{b^2 \,x^5}{5}+b^2 x+\frac{27x^3}{3}+C\)
d) \(\frac{a^2 \,x^5}{5}+x+\frac{2abx^3}{5}+C\)
View Answer
Explanation: To find (ax2+b)2
\(\int (ax^2+b)^2 dx=\int (a^2 \,x^4+b^2+2ax^2 \,b) dx\)
\(\int (ax^2+b)^2 dx=\int \,a^2 \,x^4 \,dx+\int \,b^2 \,dx+2\int \,ax^2 \,b \,dx\)
\(\int (ax^2+b)^2 dx=a^2 \,\int \,x^4 \,dx+b^2 \int \,dx+2ab\int \,x^2 \,dx\)
\(\int (ax^2+b)^2 dx=a^2 (\frac{x^5}{5})+b^2 x+2ab(\frac{x^3}{3})\)
\(\int (ax^2+b)^2 dx=\frac{a^2 \,x^5}{5}+b^2 x+\frac{2abx^3}{3}+C\)
More MCQs on Class 12 Maths Chapter 7:
- Chapter 7 – Integrals MCQ (Set 2)
- Chapter 7 – Integrals MCQ (Set 3)
- Chapter 7 – Integrals MCQ (Set 4)
- Chapter 7 – Integrals MCQ (Set 5)
- Chapter 7 – Integrals MCQ (Set 6)
- Chapter 7 – Integrals MCQ (Set 7)
- Chapter 7 – Integrals MCQ (Set 8)
- Chapter 7 – Integrals MCQ (Set 9)
- Chapter 7 – Integrals MCQ (Set 10)
- Chapter 7 – Integrals MCQ (Set 11)
To practice all chapters and topics of class 12 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Practice Class 12 - Physics MCQs
- Practice Class 12 - Biology MCQs
- Check Class 12 - Mathematics Books
- Practice Class 12 - Chemistry MCQs
- Practice Class 11 - Mathematics MCQs