Class 12 Maths MCQ – Integrals

This set of Class 12 Maths Chapter 7 Multiple Choice Questions & Answers (MCQs) focuses on “Integrals”. These MCQs are created based on the latest CBSE syllabus and the NCERT curriculum, offering valuable assistance for exam preparation.

1. Find the integral of \(8x^3+1\).
a) 2x4+x+C
b) 2x6-5x+C
c) 2x4-x+C
d) 2x4+x2 C
View Answer

Answer: a
Explanation: \(\int \,8x^{3+1} \,dx\)
Using \(\int \,x^n \,dx=\frac{x^{n+1}}{n+1}\), we get
\(\int \,8x^{3+1} \,dx=\int 8x^3 \,dx+\int \,1 \,dx\)
=\(\frac{8x^{3+1}}{3+1}+x\)
=\(\frac{8x^4}{4}+x\)
=2x4+x+C.

2. Find ∫ 7x2-x3+2x dx.
a) \(\frac{7x^3}{3}+\frac{x^4}{5}-\frac{2x^2}{2}+C\)
b) \(\frac{7x^3}{3}+\frac{x^4}{4}+\frac{2x^2}{2}+C\)
c) \(\frac{7x^5}{9}-\frac{x^4}{4}+\frac{2x^2}{2}+C\)
d) \(\frac{7x^3}{3}-\frac{x^4}{4}+x^2+C\)
View Answer

Answer: d
Explanation: To find \(\int 7x^2-x^3+2x dx\)
\(\int 7x^2-x^3+2x dx=\int 7x^2 dx-\int x^3 dx+2\int x dx\)
Using \(\int x^n dx=\frac{x^{n+1}}{n+1}\), we get
\(\int 7x^2-x^3+2x dx=\frac{7x^{2+1}}{2+1}-\frac{x^{3+1}}{3+1}+2(\frac{x^{1+1}}{1+1})\)
∴\(\int 7x^2-x^3+2x dx=\frac{7x^3}{3}-\frac{x^4}{4}+x^2+C\)

3. Find the integral of 2 sin⁡2x+3.
a) sin⁡2x+3x+C
b) -cos⁡2x-3x3+C
c) -cos⁡2x+3x+C
d) cos⁡2x-3x+12+C
View Answer

Answer: c
Explanation: To find ∫ 2 sin⁡2x+3 dx
\(\int \,2 \,sin⁡2x+3 \,dx=\int \,2 \,sin⁡2x \,dx + \int \,3 \,dx\)
\(\int \,2 \,sin⁡2x+3 \,dx=2\int \,sin⁡2x \,dx+3\int \,dx\)
\(\int \,2 \,sin⁡2x+3 \,dx=\frac{-2 cos⁡2x}{2}+3x\)
∴∫2 sin⁡2x+3 dx=-cos⁡2x+3x+C
advertisement
advertisement

4. Find the integral of \(\int 3e^x+\frac{2}{x}+x^3 dx\).
a) \(3e^3x+\frac{2}{x}-\frac{x^4}{4}+c\)
b) \(3e^x+2 \,log⁡x+\frac{x^4}{4}+c\)
c) \(e^x+2 \,log⁡x+\frac{x^4}{4}+c\)
d) \(3e^x-\frac{2}{x^2}+\frac{x^4}{4}+c\)
View Answer

Answer: b
Explanation: To find \(\int \,3e^x+\frac{2}{x}+x^3 \,dx\)
\(\int \,3e^x+\frac{2}{x}+x^3 dx=3\int \,e^x \,dx+2\int \frac{1}{x} \,dx+\int x^3 \,dx\)
\(\int \,e^x \,dx=e^x\)
\(\int \frac{1}{x} dx=log⁡x\)
∴\(\int 3e^x+\frac{2}{x}+x^3 \,dx=3e^x+2 \,log⁡x+\frac{x^4}{4}+c\)

5. Find the integral of \(\frac{4x^4-3x^2}{x^3}\).
a) 7x2-3 log⁡x3+C
b) 2x2-3 log⁡x+C
c) x2-log⁡x+C
d) 2x2+3 log⁡x+C
View Answer

Answer: b
Explanation: To find \(\int \frac{4x^4-3x^2}{x^3} dx\)
\(\int \frac{4x^4-3x^2}{x^3} \,dx=\int \frac{4x^4}{x^3} – \frac{3x^2}{x^3} \,dx\)
\(\int \frac{4x^4-3x^2}{x^3} \,dx=\int 4x dx-\int \frac{3}{x} dx\)
\(\int \frac{4x^4-3x^2}{x^3} \,dx=\frac{4x^2}{2}-3 log⁡x\)
∴ \(\int \frac{4x^4-3x^2}{x^3} \,dx=2x^2-3 \,log⁡x+C\).
Note: Join free Sanfoundry classes at Telegram or Youtube

6. Find \(\int \,3 \,cos⁡x+\frac{1}{x} dx\).
a) \(3 \,sin⁡x-\frac{1}{x}+C\)
b) \(2 \,sin⁡x+\frac{1}{x^3}+C\)
c) \(3 \,sin⁡3x+\frac{1}{x}+C\)
d) \(sin⁡x-\frac{1}{x^2}+C\)
View Answer

Answer: a
Explanation: To find \(\int \,3 \,cos⁡x+\frac{1}{x^2} dx\)
\(\int \,3 \,cos⁡x+\frac{1}{x^2} dx=3 \int cos⁡x \,dx+\int \frac{1}{x^2} \,dx\)
\(\int \,3 \,cos⁡x+\frac{1}{x^2} dx=3 \,sin⁡x+\int x^{-2} \,dx\)
\(\int \,3 \,cos⁡x+\frac{1}{x^2} dx=3 \,sin⁡x+\frac{x^{-2+1}}{-2+1}\)
\(\int \,3 \,cos⁡x+\frac{1}{x^2} dx=3 \,sin⁡x-\frac{1}{x}+C\)

7. Find \(\int (2+x)x\sqrt{x} dx\).
a) \(\frac{4x^{5/2}}{5}+\frac{2x^{7/2}}{9}+C\)
b) \(\frac{4x^{5/2}}{5}-\frac{2x^{7/2}}{7}+C\)
c) \(\frac{4x^{5/2}}{6}+\frac{2x^{7/2}}{7}+C\)
d) –\(\frac{4x^{5/2}}{5}+\frac{2x^{7/2}}{7}+C\)
View Answer

Answer: c
Explanation: To find \(\int (2+x)x\sqrt{x} dx\)
\(\int \,(2+x)x\sqrt{x} \,dx=\int \,2x\sqrt{x}+x^{5/2} \,dx\)
\(\int \,(2+x)x\sqrt{x} \,dx=\int \,2x^{3/2} dx + \int x^{5/2} dx\)
\(\int \,(2+x)x\sqrt{x} \,dx=\frac{2x^{3/2+1}}{3/2+1}+\frac{x^{5/2+1}}{5/2+1}\)
\(\int \,(2+x)x\sqrt{x} \,dx=\frac{4x^{5/2}}{5}+\frac{2x^{7/2}}{7}+C\)
advertisement

8. Find \(\int \,7x^8-4e^{2x}-\frac{2}{x^2} \,dx\).
a) \(\frac{7x^4}{4}-2e^{2x}+\frac{2}{x}+C\)
b) \(\frac{7x^4}{4}+2e^{2x}+\frac{2}{x}+C\)
c) \(\frac{7x^4}{4}-2e^{2x} \frac{2}{x^2}+C\)
d) \(\frac{7x^4}{8}+2e^{2x}-\frac{4}{x}+C\)
View Answer

Answer: a
Explanation: To find:\(\int 7x^8-4e^{2x}-\frac{2}{x^2} dx\)
\(\int \,7x^8-4e^{2x}-\frac{2}{x^2} \,dx=\int 7x^9 dx-4\int e^{2x} dx-2\int \frac{1}{x}^2 dx\)
\(\int \,7x^8-4e^{2x}-\frac{2}{x^2} \,dx=\frac{7x^{9+1}}{9+1}-\frac{4e^{2x}}{2}-\frac{2x^{-2+1}}{-2+1}\)
∴\(\int \,7x^8-4e^{2x}-\frac{2}{x^2} dx=\frac{7x^{10}}{10}-2e^{2x}+\frac{2}{x}+C\)

9. Find the integral \(\int sin⁡2x+e^3x-cos⁡3x dx\).
a) –\(\frac{sin⁡2x}{2}+\frac{e^{3x}}{3}-\frac{sin⁡3x}{3}+C\)
b) –\(\frac{cos⁡2x}{2}+\frac{e^{3x}}{3}-\frac{sin⁡3x}{3}+C\)
c) \(\frac{cos⁡2x}{2}+\frac{e^{3x}}{3}-\frac{cos⁡3x}{3}+C\)
d) –\(\frac{cos⁡2x}{2}-\frac{e^{3x}}{3}+\frac{cos⁡3x}{3}+C\)
View Answer

Answer: b
Explanation: To find \(\int \,sin⁡2x+e^{3x}-cos⁡3x \,dx\)
\(\int sin⁡2x+e^{3x}-cos⁡3x \,dx=\int \,sin⁡2x \,dx+\int \,e^{3x} \,dx-\int \,cos⁡3x \,dx\)
\(\int sin⁡2x+e^{3x}-cos⁡3x \,dx=-\frac{cos⁡2x}{2}+\frac{e^{3x}}{3}-\frac{sin⁡3x}{3}+C\)
advertisement

10. Find the integral of (ax2+b)2.
a) \(\frac{a^2 \,x^5}{5}+b^2 \,x+\frac{2abx^3}{3}+C\)
b) –\(\frac{a^2 \,x^5}{5}-b^2 \,x+\frac{2abx^3}{3}+C\)
c) \(\frac{b^2 \,x^5}{5}+b^2 x+\frac{27x^3}{3}+C\)
d) \(\frac{a^2 \,x^5}{5}+x+\frac{2abx^3}{5}+C\)
View Answer

Answer: a
Explanation: To find (ax2+b)2
\(\int (ax^2+b)^2 dx=\int (a^2 \,x^4+b^2+2ax^2 \,b) dx\)
\(\int (ax^2+b)^2 dx=\int \,a^2 \,x^4 \,dx+\int \,b^2 \,dx+2\int \,ax^2 \,b \,dx\)
\(\int (ax^2+b)^2 dx=a^2 \,\int \,x^4 \,dx+b^2 \int \,dx+2ab\int \,x^2 \,dx\)
\(\int (ax^2+b)^2 dx=a^2 (\frac{x^5}{5})+b^2 x+2ab(\frac{x^3}{3})\)
\(\int (ax^2+b)^2 dx=\frac{a^2 \,x^5}{5}+b^2 x+\frac{2abx^3}{3}+C\)

More MCQs on Class 12 Maths Chapter 7:

To practice all chapters and topics of class 12 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.