Mathematics Questions and Answers – Methods of Integration-1

«
»

This set of Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Methods of Integration-1”.

1. Find ∫7 cos⁡mx dx.
a) \(\frac{7 \,sin⁡mx}{x}+C\)
b) \(\frac{7 \,sin⁡mx}{m}+C\)
c) \(\frac{sin⁡mx}{x}+C\)
d) \(\frac{sin⁡x}{m}+C\)
View Answer

Answer: b
Explanation: Using Integration by Substitution, Let xm=t
Differentiating w.r.t x, we get
mdx=dt
∴\(\int 7 \,cos⁡mx \,dx=\int \frac{(7 cos⁡t)}{m} dt\)
=\(\frac{7}{m} \int cos⁡t \,dt=\frac{7}{m} (sin⁡t)+C\)
Replacing t with mx again we get,
\(\int 7 \,cos⁡mx \,dx=\frac{7 \,sin⁡mx}{m}+C\)
advertisement

2. Integrate \(3x^2 (cos⁡x^3+8)\).
a) \(sin⁡x^3-8x^3+C\)
b) \(sin⁡x^3+8x^3+C\)
c) –\(sin⁡x^3+8x^3+C\)
d) \(sin⁡x^3-x^3+C\)
View Answer

Answer: b
Explanation: By using the method of integration by substitution,
Let x3=t
Differentiating w.r.t x, we get
3x2 dx=dt
\(\int 3x^2 \,(cos⁡x^3+8) \,dx=\int (cos⁡t+8)dt\)
\(\int (cos⁡t+8) dt=sin⁡t+8t\)
Replacing t with x3,we get
\(\int 3x^2 (cos⁡x^3+8) dx=sin⁡x^3+8x^3+C\)

3. Find \(\int 6x(x^2+6)dx\).
a) \(\frac{3x^4}{2}+18x^2+C\)
b) \(\frac{3x^4}{2}-18x+C\)
c) \(\frac{3x^4}{2}-18x^2+C\)
d) \(\frac{3x^4}{2}+x^2+C\)
View Answer

Answer: a
Explanation: Let x2=t
Differentiating w.r.t x, we get
2x dx=dt
\(\int 6x(x^2+6)dx=3\int (t+6) dt\)
3\(\int (t+6)dt=3\left (\frac{t^2}{2}+6t\right )=\frac{3t^2}{2}+18t\)
Replacing t with x2
\(\int 6x(x^2+6)dx=\frac{3x^4}{2}+18x^2+C\)
advertisement
advertisement

4. Find the integral of \(3e^x+\frac{2(log⁡ x)}{3x}\).
a) \(3e^x+\frac{1}{3} (x)^2+C\)
b) \(e^x-\frac{8}{3} (log⁡x)^2+C\)
c) \(3e^x-\frac{1}{3} (log⁡x)^2+C\)
d) \(3e^x+\frac{1}{3} (log⁡x)^2+C\)
View Answer

Answer: d
Explanation: \(\int 3e^x+\frac{2(log⁡x^2)}{3x} dx=3\int e^x dx+\frac{2}{3} \int \frac{log⁡x}{x}\)
Let log⁡x=t
Differentiating w.r.t x, we get
\(\frac{1}{x} dx=dt\)
∴\(\int \frac{log⁡x}{x}=\int \,t \,dt=\frac{t^2}{2}\)
\(\int e^x dx=e^x\)
Replacing t with log⁡x, we get
\(\int 3e^x+\frac{2(log⁡x^2)}{3x} dx=3e^x+\frac{1}{3} (log⁡x)^2+C\)

5. Find \(\int \frac{e^{-cot^{-1}⁡x}}{1+x^2}\).
a) \(e^{-cot^{-1}⁡x}+C\)
b) \(e^{-2cot^{-1}⁡x}+C\)
c) \(e^{-tan^{-1}⁡x}+C\)
d) \(e^{-cot^1⁡2x}+C\)
View Answer

Answer: a
Explanation: Let \(-cot^{-1}⁡x\)=t
Differentiating w.r.t x, we get
–\(\left (-\frac{1}{1+x^2}\right )dx=dt\)
\(\frac{1}{1+x^2} dx=dt\)
\(\int \frac{e^{-cot^{-1}}x}{1+x^2} dx=\int e^t \,dt\)
=et
Replacing t with -cot-1x, we get
\(\int \frac{e^{-cot^{-1}}x}{1+x^2} dx=e^{-cot^{-1}}x+C\)
advertisement

6. Find the integral of \(\frac{5x^4}{\sqrt{x^5+9}}\).
a) \(\sqrt{x^5+9}\)
b) \(2\sqrt{x^5-9}\)
c) 2(x5+9)
d) \(2\sqrt{x^5+9}\)
View Answer

Answer: d
Explanation: Let x5+9=t
Differentiating w.r.t x, we get
5x4 dx=dt
\(\int \frac{5x^4}{\sqrt{x^5+9}} dx=\int \frac{dt}{\sqrt{t}}\)
=\(\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}=2\sqrt{t}\)
Replacing t with x5+9, we get
\(\int \frac{5x^4}{\sqrt{x^5+9}} dx=2\sqrt{x^5+9}\).

7. Find \(\int \frac{6 sin⁡\sqrt{x}}{\sqrt{x}} dx\)
a) \(2 \,cos⁡\sqrt{x}+C\)
b) –\(12 \,cos⁡\sqrt{x}+C\)
c) -12 cos⁡x+C
d) 12 cos⁡x+C
View Answer

Answer: b
Explanation: Let \(\sqrt{x}=t\)
Differentiating w.r.t x,we get
\(\frac{1}{2\sqrt{x}} dx=dt\)
\(\frac{1}{\sqrt{x}} dx=2dt\)
∴\(\int \frac{6 sin⁡\sqrt{x}}{\sqrt{x}} dx=\int \,12 \,sin⁡t \,dt\)
=12(-cos⁡t)=-12 cos⁡t
Replacing t with \(\sqrt{x}\), we get
\(\int \frac{6 sin⁡\sqrt{x}}{\sqrt{x}} dx=-12 \,cos⁡\sqrt{x}+C\)
advertisement

8. Find \(\int \frac{20x^3}{1+x^4} dx\).
a) 5 log⁡(x4)+C
b) -5 log⁡(1+x4)+C
c) 5 log⁡(1+x4)+C
d) log⁡(1+x4)+C
View Answer

Answer: c
Explanation: Let 1+x4=t
4x3 dx=dt
∴\(\int \frac{20x^3}{1+x^4} dx=5\int \frac{dt}{t}\)
=5 log⁡t
Replacing t with 1+x4, we get
\(\int \frac{20x^3}{1+x^4} dx=5 \,log⁡(1+x^4)+C\)

9. Integrate \(\frac{x^2}{e^{x^3}}\).
a) –\(\frac{1}{(3e^{x^3})}+C\)
b) \(\frac{1}{3e^{x^3}}+C\)
c) –\(\frac{1}{e^{x^3}}+C\)
d) ex3+C
View Answer

Answer: a
Explanation: Let x3=t
3x2 dx=dt
x2 dx=dt/3
∴\(\int \frac{x^2}{e^{x^3}} dx=\frac{1}{3} \int \frac{dt}{e^t}\)
=\(\frac{1}{3} \left (-e^{-t}\right )\)
Replacing t with x3, we get
\(\int \frac{x^2}{e^{x^3}} dx=-\frac{1}{3e^{x^3}}+C\)
advertisement

10. Find \(\int \frac{cos^{-1}x}{\sqrt{1-x^2}} dx\).
a) \(\frac{(sin^{-1}⁡x)^2}{2}+C\)
b) \(\frac{(cos^{-1}⁡x)^2}{7}+C\)
c) \(\frac{(cos^{-1}⁡x)^2}{2}+C\)
d) –\(\frac{(cos^{-1}⁡x)^2}{2}+C\)
View Answer

Answer: c
Explanation: Let cos-1⁡x=t
Differentiating w.r.t x, we get
\(\frac{1}{\sqrt{1-x^2}} dx=dt\)
∴\(\int \frac{cos^{-1}⁡x}{\sqrt{1-x^2}} dx=\int t dt\)
=\(\frac{t^2}{2}\)
Replacing t with cos-1x,we get
\(\int \frac{cos^{-1}⁡x}{\sqrt{1-x^2}} dx=\frac{(cos^{-1}⁡x)^2}{2}+C\)

Sanfoundry Global Education & Learning Series – Mathematics – Class 12.

To practice all areas of Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

advertisement
advertisement
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn | Youtube | Instagram | Facebook | Twitter