Class 12 Maths MCQ – Mean Value Theorem

This set of Class 12 Maths Chapter 5 Multiple Choice Questions & Answers (MCQs) focuses on “Mean Value Theorem”.

1. Function f should be _____ on [a,b] according to Rolle’s theorem.
a) continuous
b) non-continuous
c) integral
d) non-existent
View Answer

Answer: a
Explanation: According to Rolle’s theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b)
iii) f(a) = f(b) then there exists at least one point c ∈ (a,b) such that f’(c) = 0

2. Function f is differential on (a,b) according to Rolle’s theorem.
a) True
b) False
View Answer

Answer: a
Explanation: According to Rolle’s theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b)
iii) f(a) = f(b) then there exists at least one point c ∈ (a,b) such that f’(c) = 0

3. What is the relation between f(a) and f(b) according to Rolle’s theorem?
a) Equals to
b) Greater than
c) Less than
d) Unequal
View Answer

Answer: a
Explanation: According to Rolle’s theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b)
iii) f(a) = f(b) then there exists at least one point c ∈ (a,b) such that f’(c) = 0
advertisement

4. Does Rolle’s theorem applicable if f(a) is not equal to f(b)?
a) Yes
b) No
c) Under particular conditions
d) May be
View Answer

Answer: b
Explanation: According to Rolle’s theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b)
iii) f(a) = f(b) then there exists at least one point c ∈ (a,b) such that f’(c) = 0

5. Another form of Rolle’s theorem for the differential condition is _____
a) f is differentiable on (a,ah)
b) f is differentiable on (a,a-h)
c) f is differentiable on (a,a/h)
d) f is differentiable on (a,a+h)
View Answer

Answer: d
Explanation: According to Rolle’s theorem, if f : [a,a+h] → R is a function such that
i) f is continuous on [a,a+h]
ii) f is differentiable on (a,a+h)
iii) f(a) = f(a+h) then there exists at least one θ c ∈ (0,1) such that f’(a+θh) = 0
Free 30-Day C Certification Bootcamp is Live. Join Now!

6. Another form of Rolle’s theorem for the continuous condition is _____
a) f is continuous on [a,a-h]
b) f is continuous on [a,h]
c) f is continuous on [a,a+h]
d) f is continuous on [a,ah]
View Answer

Answer: c
Explanation: According to Rolle’s theorem, if f : [a,a+h] → R is a function such that
i) f is continuous on [a,a+h]
ii) f is differentiable on (a,a+h)
iii) f(a) = f(a+h) then there exists at least one θ c ∈ (0,1) such that f’(a+θh) = 0

7. What is the relation between f(a) and f(h) according to another form of Rolle’s theorem?
a) f(a) < f(a+h)
b) f(a) = f(a+h)
c) f(a) = f(a-h)
d) f(a) > f(a+h)
View Answer

Answer: b
Explanation: According to Rolle’s theorem, if f : [a,a+h] → R is a function such that
i) f is continuous on [a,a+h]
ii) f is differentiable on (a,a+h)
iii) f(a) = f(a+h) then there exists at least one θ c ∈ (0,1) such that f’(a+θh) = 0

8. Function f is not continuous on [a,b] to satisfy Lagrange’s mean value theorem.
a) False
b) True
View Answer

Answer: a
Explanation: According to Lagrange’s mean value theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b) then there exists a least point c ∈ (a,b) such that f’(c) = \(\frac {f(b)-f(a)}{b-a}\).

9. What are/is the conditions to satify Lagrange’s mean value theorem?
a) f is continuous on [a,b]
b) f is differentiable on (a,b)
c) f is differentiable and continuous on (a,b)
d) f is differentiable and non-continuous on (a,b)
View Answer

Answer: c
Explanation: According to Lagrange’s mean value theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b) then there exists a least point c ∈ (a,b) such that f’(c) = \(\frac {f(b)-f(a)}{b-a}\).
advertisement

10. Function f is differentiable on [a,b] to satisfy Lagrange’s mean value theorem.
a) True
b) False
View Answer

Answer: a
Explanation: According to Lagrange’s mean value theorem, if f : [a,b] → R is a function such that f is differentiable on (a,b) then there exists a least point c ∈ (a,b) such that f’(c) = \(\frac {f(b)-f(a)}{b-a}\). This shows Function f is differentiable on [a,b].

11. Lagrange’s mean value theorem is also called as _____
a) Euclid’s theorem
b) Rolle’s theorem
c) a special case of Rolle’s theorem
d) the mean value theorem
View Answer

Answer: d
Explanation: Lagrange’s mean value theorem is also called the mean value theorem and Rolle’s theorem is just a special case of Lagrange’s mean value theorem when f(a) = f(b).

12. Rolle’s theorem is a special case of _____
a) Euclid’s theorem
b) another form of Rolle’s theorem
c) Lagrange’s mean value theorem
d) Joule’s theorem
View Answer

Answer: c
Explanation: Rolle’s theorem is just a special case of Lagrange’s mean value theorem when f(a) = f(b) and Lagrange’s mean value theorem is also called the mean value theorem.

13. Is Rolle’s theorem applicable to f(x) = tan x on [ \(\frac {\pi }{4}, \frac {5\pi }{4}\) ]?
a) Yes
b) No
View Answer

Answer: b
Explanation: Given function is f(x) = tan x on [ \(\frac {\pi }{4}, \frac {5\pi }{4}\) ]
F(x) = tan x is not defined at x on [ \(\frac {\pi }{4}, \frac {5\pi }{4}\) ]
So, f(x) is not continuous on [ \(\frac {\pi }{4}, \frac {5\pi }{4}\) ].
Hence, Rolle’s theorem is not applicable.

14. What is the formula for Lagrange’s theorem?
a) f’(c) = \(\frac {f(a)+f(b)}{b-a}\)
b) f’(c) = \(\frac {f(b)-f(a)}{b-a}\)
c) f’(c) = \(\frac {f(a)+f(b)}{b+a}\)
d) f’(c) = \(\frac {f(a)-f(b)}{b+a}\)
View Answer

Answer: b
Explanation: According to Lagrange’s mean value theorem, if f : [a,b] → R is a function such that f is differentiable on (a,b) then the formula for Lagrange’s theorem is f’(c) = \(\frac {f(b)-f(a)}{b-a}\).

15. Find ’C’ using Lagrange’s mean value theorem, if f(x) = ex, a = 0, b = 1.
a) ee-1
b) e-1
c) log\(_e^{e+1}\)
d) log\(_e^{e-1}\)
View Answer

Answer: d
Explanation: Given f(x) = ex, a = 0, b = 1
f’(c) = \(\frac {f(b)-f(a)}{b-a}\)
ec = \(\frac {e-1}{1-0}\)
ec = e – 1
C = log\(_e^{e-1}\)

Sanfoundry Global Education & Learning Series – Mathematics – Class 12.

To practice all chapters and topics of class 12 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
I’m Manish - Founder and CTO at Sanfoundry. I’ve been working in tech for over 25 years, with deep focus on Linux kernel, SAN technologies, Advanced C, Full Stack and Scalable website designs.

You can connect with me on LinkedIn, watch my Youtube Masterclasses, or join my Telegram tech discussions.

If you’re in your 40s–60s and exploring new directions in your career, I also offer mentoring. Learn more here.