# Mathematics Questions and Answers – Mean Value Theorem

«
»

This set of Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Mean Value Theorem”.

1. Function f should be _____ on [a,b] according to Rolle’s theorem.
a) continuous
b) non-continuous
c) integral
d) non-existent

Explanation: According to Rolle’s theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b)
iii) f(a) = f(b) then there exists at least one point c ∈ (a,b) such that f’(c) = 0

2. Function f is differential on (a,b) according to Rolle’s theorem.
a) True
b) False

Explanation: According to Rolle’s theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b)
iii) f(a) = f(b) then there exists at least one point c ∈ (a,b) such that f’(c) = 0

3. What is the relation between f(a) and f(b) according to Rolle’s theorem?
a) Equals to
b) Greater than
c) Less than
d) Unequal

Explanation: According to Rolle’s theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b)
iii) f(a) = f(b) then there exists at least one point c ∈ (a,b) such that f’(c) = 0

4. Does Rolle’s theorem applicable if f(a) is not equal to f(b)?
a) Yes
b) No
c) Under particular conditions
d) May be

Explanation: According to Rolle’s theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b)
iii) f(a) = f(b) then there exists at least one point c ∈ (a,b) such that f’(c) = 0

5. Another form of Rolle’s theorem for the differential condition is _____
a) f is differentiable on (a,ah)
b) f is differentiable on (a,a-h)
c) f is differentiable on (a,a/h)
d) f is differentiable on (a,a+h)

Explanation: According to Rolle’s theorem, if f : [a,a+h] → R is a function such that
i) f is continuous on [a,a+h]
ii) f is differentiable on (a,a+h)
iii) f(a) = f(a+h) then there exists at least one θ c ∈ (0,1) such that f’(a+θh) = 0

6. Another form of Rolle’s theorem for the continuous condition is _____
a) f is continuous on [a,a-h]
b) f is continuous on [a,h]
c) f is continuous on [a,a+h]
d) f is continuous on [a,ah]

Explanation: According to Rolle’s theorem, if f : [a,a+h] → R is a function such that
i) f is continuous on [a,a+h]
ii) f is differentiable on (a,a+h)
iii) f(a) = f(a+h) then there exists at least one θ c ∈ (0,1) such that f’(a+θh) = 0

7. What is the relation between f(a) and f(h) according to another form of Rolle’s theorem?
a) f(a) < f(a+h)
b) f(a) = f(a+h)
c) f(a) = f(a-h)
d) f(a) > f(a+h)

Explanation: According to Rolle’s theorem, if f : [a,a+h] → R is a function such that
i) f is continuous on [a,a+h]
ii) f is differentiable on (a,a+h)
iii) f(a) = f(a+h) then there exists at least one θ c ∈ (0,1) such that f’(a+θh) = 0

8. Function f is not continuous on [a,b] to satisfy Lagrange’s mean value theorem.
a) False
b) True

Explanation: According to Lagrange’s mean value theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b) then there exists a least point c ∈ (a,b) such that f’(c) = $$\frac {f(b)-f(a)}{b-a}$$.

9. What are/is the conditions to satify Lagrange’s mean value theorem?
a) f is continuous on [a,b]
b) f is differentiable on (a,b)
c) f is differentiable and continuous on (a,b)
d) f is differentiable and non-continuous on (a,b)

Explanation: According to Lagrange’s mean value theorem, if f : [a,b] → R is a function such that
i) f is continuous on [a,b]
ii) f is differentiable on (a,b) then there exists a least point c ∈ (a,b) such that f’(c) = $$\frac {f(b)-f(a)}{b-a}$$.

10. Function f is differentiable on [a,b] to satisfy Lagrange’s mean value theorem.
a) True
b) False

Explanation: According to Lagrange’s mean value theorem, if f : [a,b] → R is a function such that f is differentiable on (a,b) then there exists a least point c ∈ (a,b) such that f’(c) = $$\frac {f(b)-f(a)}{b-a}$$. This shows Function f is differentiable on [a,b].

11. Lagrange’s mean value theorem is also called as _____
a) Euclid’s theorem
b) Rolle’s theorem
c) a special case of Rolle’s theorem
d) the mean value theorem

Explanation: Lagrange’s mean value theorem is also called the mean value theorem and Rolle’s theorem is just a special case of Lagrange’s mean value theorem when f(a) = f(b).

12. Rolle’s theorem is a special case of _____
a) Euclid’s theorem
b) another form of Rolle’s theorem
c) Lagrange’s mean value theorem
d) Joule’s theorem

Explanation: Rolle’s theorem is just a special case of Lagrange’s mean value theorem when f(a) = f(b) and Lagrange’s mean value theorem is also called the mean value theorem.

13. Is Rolle’s theorem applicable to f(x) = tan x on [ $$\frac {\pi }{4}, \frac {5\pi }{4}$$ ]?
a) Yes
b) No

Explanation: Given function is f(x) = tan x on [ $$\frac {\pi }{4}, \frac {5\pi }{4}$$ ]
F(x) = tan x is not defined at x on [ $$\frac {\pi }{4}, \frac {5\pi }{4}$$ ]
So, f(x) is not continuous on [ $$\frac {\pi }{4}, \frac {5\pi }{4}$$ ].
Hence, Rolle’s theorem is not applicable.

14. What is the formula for Lagrange’s theorem?
a) f’(c) = $$\frac {f(a)+f(b)}{b-a}$$
b) f’(c) = $$\frac {f(b)-f(a)}{b-a}$$
c) f’(c) = $$\frac {f(a)+f(b)}{b+a}$$
d) f’(c) = $$\frac {f(a)-f(b)}{b+a}$$

Explanation: According to Lagrange’s mean value theorem, if f : [a,b] → R is a function such that f is differentiable on (a,b) then the formula for Lagrange’s theorem is f’(c) = $$\frac {f(b)-f(a)}{b-a}$$.

15. Find ’C’ using Lagrange’s mean value theorem, if f(x) = ex, a = 0, b = 1.
a) ee-1
b) e-1
c) log$$_e^{e+1}$$
d) log$$_e^{e-1}$$

Explanation: Given f(x) = ex, a = 0, b = 1
f’(c) = $$\frac {f(b)-f(a)}{b-a}$$
ec = $$\frac {e-1}{1-0}$$
ec = e – 1
C = log$$_e^{e-1}$$

Sanfoundry Global Education & Learning Series – Mathematics – Class 12.

To practice all areas of Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs! 