Class 12 Maths MCQ – Three Dimensional Geometry

This set of Class 12 Maths Chapter 11 Multiple Choice Questions & Answers (MCQs) focuses on “Three Dimensional Geometry”. These MCQs are created based on the latest CBSE syllabus and the NCERT curriculum, offering valuable assistance for exam preparation.

1. If a, b, c are the direction ratios of the line and l, m, n are the direction cosines of the line, then which of the following is true?
a) \(\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=μ\)
b) \(\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=μ-1\)
c) \(\frac{l}{a}=\frac{m}{c}=\frac{n}{b}=μ\)
d) \(\frac{l}{a}=\frac{n+1}{b}=\frac{n}{c}=μ\)
View Answer

Answer: a
Explanation: For a given line, if a, b, c are the direction ratios and l, m, n are the direction cosines of the line then
a=μl, b=μm, c=μn
Or we can say that,
\(\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=μ\), where μ is a constant.

2. If a line makes an angle of 120°, 45°, 30° with the positive x, y, z-axis respectively then find the direction cosines.
a) l=\(\frac{1}{2}, \,m=\frac{1}{\sqrt{2}}, \,n=\frac{\sqrt{3}}{2}\)
b) l=-\(\frac{1}{2}, \,m=-\frac{1}{\sqrt{2}}, \,n=-\frac{\sqrt{3}}{2}\)
c) l=-\(\frac{1}{2}, \,m=\frac{1}{\sqrt{2}}, \,n=\frac{\sqrt{3}}{2}\)
d) l=\(0, \,m=\frac{1}{\sqrt{2}}, \,n=\frac{\sqrt{3}}{2}\)
View Answer

Answer: c
Explanation: Let l, m, n be the direction cosines of the line.
We know that, if α, β, γ are the angles that the line makes with the x, y, z- axis respectively, then
l=cos⁡α
m=cos⁡β
n=cos⁡γ
∴l=cos⁡120°, m=cos⁡45°, n=cos⁡30°
Hence, \(l=-\frac{1}{2}, \,m=\frac{1}{\sqrt{2}}, \,n=\frac{\sqrt{3}}{2}\)

3. If a line has direction ratios 2, -3, 7 then find the direction cosines.
a) l=\(\frac{2}{\sqrt{62}},m=-\frac{7}{\sqrt{62}},n=\frac{7}{\sqrt{62}}\)
b) l=\(\frac{2}{\sqrt{6}},m=-\frac{3}{\sqrt{6}},n=\frac{7}{\sqrt{6}}\)
c) l=-\(\frac{2}{\sqrt{62}},m=-\frac{3}{\sqrt{62}},n=-\frac{7}{\sqrt{62}}\)
d) l=\(\frac{2}{\sqrt{62}},m=-\frac{3}{\sqrt{62}},n=\frac{7}{\sqrt{62}}\)
View Answer

Answer: d
Explanation: For a given line, if a, b, c are the direction ratios and l, m, n are the direction cosines of the line then
l=±\(\frac{a}{\sqrt{a^2+b^2+c^2}}\)
m=±\(\frac{b}{\sqrt{a^2+b^2+c^2}}\)
n=±\(\frac{c}{\sqrt{a^2+b^2+c^2}}\)
∴l=\(\frac{2}{\sqrt{2^2+(-3)^2+7^2}}, \,m=-\frac{3}{\sqrt{2^2+(-3)^2+7^2}}, \,n=\frac{7}{\sqrt{2^2+(-3)^2+7^2}}\)
Hence, l=\(\frac{2}{\sqrt{62}}, \,m=-\frac{3}{\sqrt{62}}, \,n=\frac{7}{\sqrt{62}}\).
advertisement
advertisement

4. Find the direction cosines of the line passing through two points (4, -5, -6) and (-1, 2, 8).
a) \(\frac{5}{270},\frac{7}{\sqrt{270}},\frac{14}{\sqrt{270}}\)
b) –\(\frac{7}{\sqrt{270}}, \frac{7}{\sqrt{270}},\frac{7}{\sqrt{270}}\)
c) –\(\frac{5}{\sqrt{270}}, \frac{7}{\sqrt{270}},\frac{14}{\sqrt{270}}\)
d) –\(\frac{5}{\sqrt{20}}, \frac{7}{\sqrt{720}},\frac{14}{\sqrt{270}}\)
View Answer

Answer: c
Explanation: The direction cosines of two lines passing through two points is given by:
\(\frac{x_2-x_1}{PQ}, \frac{y_2-y_1}{PQ}, \frac{z_2-z_1}{PQ} \)
and \(PQ = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}\)
In the given problem we have, P(4,-5,-6) and Q(-1,2,8)
∴\(PQ = \sqrt{(-1-4)^2+(2+5)^2+(8+6)^2}\)
\(=\sqrt{25+49+196}=\sqrt{270}\)
Hence, the direction ratios are \(l=\frac{(-1-4)}{\sqrt{270}}=-\frac{5}{\sqrt{270}}\)
\(m=\frac{(2+5)}{\sqrt{270}}=\frac{7}{\sqrt{270}}\)
\(n=\frac{(8+6)}{\sqrt{270}}=\frac{14}{\sqrt{270}}\).

5. The direction ratios of the line segment joining \(P(x_1,y_1,z_1)\) and \(Q(x_2,y_2,z_2)\) is given by _______, ____________ and __________
a) \(x_2+x_1,y_2+y_1,z_2+z_1\)
b) \(x_2-x_1,y_2+y_1,z_2-z_1\)
c) \(x_2-x_1,y_2-y_1,z_2-z_1\)
d) \(x_2+x_1,y_2-y_1,z_2+z_1\)
View Answer

Answer: c
Explanation: Let a.,b,c be the direction ratios of the line segment PQ.
Then, the direction ratios of the line segment joining \(P(x_1,y_1,z_1)\) and \(Q(x_2,y_2,z_2)\) is given by
\(a=x_2-x_1\)
\(b=y_2-y_1\)
\(c=z_2-z_1\)
Note: Join free Sanfoundry classes at Telegram or Youtube

6. Find the direction cosines of the line passing through two points P(-6,7,3) and Q(3,-2,5).
a) –\(\frac{2}{\sqrt{166}},\frac{-9}{\sqrt{166}},\frac{2}{\sqrt{166}}\)
b) –\(\frac{9}{\sqrt{166}},\frac{-7}{\sqrt{166}},\frac{2}{\sqrt{166}}\)
c) –\(\frac{9}{\sqrt{66}},\frac{-9}{\sqrt{66}},\frac{2}{\sqrt{66}}\)
d) –\(\frac{9}{\sqrt{166}},\frac{-9}{\sqrt{166}},\frac{2}{\sqrt{166}}\)
View Answer

Answer: d
Explanation: The direction cosines of two lines passing through two points is given by:
\(\frac{x_2-x_1}{PQ},\frac{y_2-y_1}{PQ},\frac{z_2-z_1}{PQ}\)
and \(PQ=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}\)
In the given problem we have, P(-6,7,3) and Q(3,-2,5)
∴\(PQ=\sqrt{(3+6)^2+(-2-7)^2+(5-3)^2}\)
=\(\sqrt{81+81+4}=\sqrt{166}\)
Hence, the direction ratios are \(l=\frac{-6-3}{\sqrt{166}}=-\frac{9}{\sqrt{166}}\)
m=\(\frac{-2-7}{\sqrt{166}}=\frac{-9}{\sqrt{166}}\)
n=\(\frac{5-3}{\sqrt{166}}=\frac{2}{\sqrt{166}}\)

7. If the direction ratios of a line are 5, 4, -7 respectively, then find the direction cosines.
a) \(\frac{75}{\sqrt{90}},\frac{4}{\sqrt{90}},\frac{5}{\sqrt{90}}\)
b) \(\frac{5}{\sqrt{90}},\frac{4}{\sqrt{90}},-\frac{7}{\sqrt{90}}\)
c) \(\frac{5}{\sqrt{70}},\frac{4}{\sqrt{70}},-\frac{7}{\sqrt{70}}\)
d) \(\frac{3}{\sqrt{90}},\frac{4}{\sqrt{90}},-\frac{5}{\sqrt{90}}\)
View Answer

Answer: b
Explanation: If a,b,c are the direction ratios and l,m,n are the direction cosines respectively for a given line, then the direction cosines in terms of the direction ratios can be expressed as
l=±\(\frac{a}{\sqrt{a^2+b^2+c^2}}\)
m=±\(\frac{b}{\sqrt{a^2+b^2+c^2}}\)
n=±\(\frac{c}{\sqrt{a^2+b^2+c^2}}\)
Given that, a=5, b=4, c=-7
l=\(\frac{5}{\sqrt{(5^2+4^2+(-7)^2)}}=\frac{5}{\sqrt{(25+16+49)}}=\frac{5}{\sqrt{90}}\)
m=\(\frac{4}{\sqrt{(5^2+4^2+(-7)^2)}}=\frac{4}{\sqrt{90}}\)
n=-\(\frac{7}{\sqrt{(5^2+4^2+(-7)^2)}}=-\frac{7}{\sqrt{90}}\)
advertisement

8. If a, b, c are the direction ratios of the line and l, m, n are the direction cosines of the line, then which of the following is incorrect?
a) \(\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=k\)
b) l2+m2+n2=1
c) k=±\(\frac{1}{\sqrt{(a^2+b^2+c^2)}}\)
d) l2-m2=n2-1
View Answer

Answer: d
Explanation: Given that, a, b, c are the direction ratios of the line and l, m, n are the direction cosines of the line,
\(\frac{l}{a}=\frac{m}{b}=\frac{n}{c}=k\) and l2+m2+n2=1
⇒l=ak, m=bk, n=ck
(ak)2+(bk)2+(ck)2=1
k2 (a2+b2+c2)=1
k2=\(\frac{1}{a^2+b^2+c^2}\)
∴k=±\(\frac{1}{\sqrt{(a^2+b^2+c^2)}}\)
Hence, l2-m2=n2-1 is incorrect.

9. If the direction cosines of the line are \(\frac{1}{2},-\frac{\sqrt{3}}{2}\),x respectively, then find the value of x.
a) 1
b) 0
c) \(\frac{\sqrt{3}}{2}\)
d) \(\frac{1}{2}\)
View Answer

Answer: b
Explanation: If the direction cosines of a line are l,m,n respectively, then
l2+m2+n2=1
∴\(\frac{1}{2}^2+(\frac{\sqrt{3}}{2})^2+x^2=1\)
x2=\(1-\frac{1}{4}-\frac{3}{4}\)
x2=0
⇒x=0
advertisement

10. If a line makes an angle of 60°, 150°, 45° with the positive x, y, z-axis respectively, find its direction cosines.
a) –\(\frac{1}{2},-\frac{\sqrt{3}}{2},\frac{1}{\sqrt{2}}\)
b) –\(\frac{1}{2},-\frac{\sqrt{3}}{2},-\frac{1}{\sqrt{2}}\)
c) \(\frac{1}{2},-\frac{\sqrt{3}}{2},\frac{1}{\sqrt{2}}\)
d) \(\frac{1}{2},\frac{\sqrt{3}}{2},-\frac{1}{\sqrt{2}}\)
View Answer

Answer: c
Explanation: Let l, m, n be the direction cosines of the line.
We know that, if α, β, γ are the angles that the line makes with the x, y, z-axis respectively, then
l=cos⁡α=cos⁡60°=\(\frac{1}{2}\)
m=cos⁡β=cos⁡150°=-\(\frac{\sqrt{3}}{2}\)
n=cos⁡γ=cos⁡45°=\(\frac{1}{\sqrt{2}}\).

More MCQs on Class 12 Maths Chapter 11:

To practice all chapters and topics of class 12 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.