This set of Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Logarithmic Differentiation”.
1. Differentiate (log2x)sin3x with respect to x.
a) (3 cos3x log(log2x)+\(\frac{sin3x}{x log2x}\))
b) \(log2x^{sin3x} \,(3 \,cos3x \,log(log2x)+\frac{sin3x}{x \,log2x})\)
c) –\((3 \,cos3x \,log(log2x)+\frac{sin3x}{x log2x})\)
d) \(\frac{3 \,cos3x \,log(log2x)+\frac{sin3x}{x log2x}}{log2x^{sin3x}}\)
View Answer
Explanation: Consider y=\((log2x)^{sin3x}\)
Applying log on both sides, we get
logy=\(log(log2x)^{sin3x}\)
logy=sin3x log(log2x)
Differentiating with respect to x, we get
\(\frac{1}{y} \,\frac{dy}{dx}=log(log2x)\frac{d}{dx} (sin3x)+sin3x \frac{d}{dx} \,(log(log2x))\)
By using chain rule, we get
\(\frac{1}{y} \,\frac{dy}{dx}=log(log2x).3 \,cos3x+sin3x.\frac{1}{log2x}.\frac{1}{2x}.2 \,(∵u.v=u’ \,v+uv’)\)
\(\frac{dy}{dx}\)=y(3 cos3x log(log2x)+\(\frac{sin3x}{x \,log2x}\))
∴\(\frac{dy}{dx}\)=log2xsin3x \(\left (3 \,cos3x \,log(log2x)+\frac{sin3x}{x \,log2x} \right )\)
2. Differentiate 4xex with respect to x.
a) xex e-x (x logx+1)
b) -4xex-1 ex (x logx+1)
c) 4xex ex (x logx+1)
d) 4xex-1 ex (x logx+1)
View Answer
Explanation: Consider y=4xex
Applying log on both sides, we get
logy=log4xex
logy=log4+logxex (∵logab=loga+logb)
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}=0+\frac{d}{dx}(e^x \,logx)(∵loga^b=b \,loga)\)
\(\frac{1}{y} \frac{dy}{dx}=\frac{d}{dx} \,(e^x) \,logx+e^{x} \,\frac{d}{dx} \,(logx)\)
\(\frac{dy}{dx}=y(e^x logx+\frac{e^x}{x})\)
\(\frac{dy}{dx}=\frac{4x^{e^{x}}e^x \,(x logx+1)}{x}=4x^{e^x-1} \,e^x \,(x logx+1)\).
3. Differentiate 9tan3x with respect to x.
a) 9tan3x (3 log9 sec2x)
b) 9tan3x (3 log3 sec2x)
c) 9tan3x (3 log9 secx)
d) -9tan3x (3 log9 sec2x)
View Answer
Explanation: Consider y=9tan3x
Applying log on both sides, we get
logy=log9tan3x
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}=\frac{d}{dx} \)(tan3x.log9)
\(\frac{1}{y} \frac{dy}{dx}=\frac{d}{dx} \,(tan3x) \,log9+\frac{d}{dx} \,(log9).tan3x \,(∵ Using \,u.v=u’ \,v+uv’)\)
\(\frac{dy}{dx}\)=y(3 sec2x.log9+0)
\(\frac{dy}{dx}\)=9tan3x (3 log9 sec2x)
4. Differentiate (cos3x)3x with respect to x.
a) (cos3x)x (3 log(cos3x) – 9x tan3x)
b) (cos3x)3x (3 log(cos3x) + 9x tan3x)
c) (cos3x)3x (3 log(cos3x) – 9x tan3x)
d) (cos3x)3x (log(cos3x) + 9 tan3x)
View Answer
Explanation: Consider y=(cos3x)3x
Applying log on both sides, we get
logy=log(cos3x)3x
logy=3x log(cos3x)
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}=\frac{d}{dx} (3x \,log(cos3x))\)
By using u.v=u’ v+uv’, we get
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{d}{dx} \,(3x) \,log(cos3x)+\frac{d}{dx} \,(log(cos3x)).3x\)
\(\frac{dy}{dx}\)=y(3 log(cos3x) + \(\frac{1}{cos3x} \,. \frac{d}{dx} \,(cos3x).3x)\)
\(\frac{dy}{dx}\)=y(3 log(cos3x) + \(\frac{1}{cos3x} \,. \,(-sin3x).\frac{d}{dx}(3x).3x)\)
\(\frac{dy}{dx}\)=y(3 log(cos3x) + \(\frac{1}{cos3x} \,. \,(-sin3x).3.3x)\)
\(\frac{dy}{dx}\)=y(3 log(cos3x) – 9x tan3x)
\(\frac{dy}{dx}\)=(cos3x)3x (3 log(cos3x) – 9x tan3x)
5. Differentiate 7x(2e2x) with respect to x.
a) 14e2x x(2e2x) (2 logx+\(\frac{1}{x}\))
b) 14x(2e2x) (2 logx+\(\frac{1}{x}\))
c) 14e2x x(2e2x) (2 logx-\(\frac{1}{x}\))
d) 14e2x x(2e2x) (logx-\(\frac{1}{x}\))
View Answer
Explanation: Consider y=7x(2e2x)
logy=log7x(2e2x)
logy=log7+logx(2e2x)
logy=log7+2e2x logx
Differentiating with respect to x on both sides, we get
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{d}{dx}\) (log7+2e2x logx)
\(\frac{1}{y} \frac{dy}{dx}\)=0+\(\frac{d}{dx}\) (2e2x) logx+\(\frac{d}{dx}\) (logx)2e2x (using u.v=u’ v+uv’)
\(\frac{1}{y} \frac{dy}{dx}\)=2e2x.2.logx+\(\frac{2e^{2x}}{x}\)
\(\frac{dy}{dx}\)=y\( \left (4e^{2x} \,logx+\frac{2e^{2x}}{x}\right)\)
\(\frac{dy}{dx}\)=7x(2e2x) \( \left (4e^{2x} \,logx+\frac{2e^{2x}}{x}\right)\)
\(\frac{dy}{dx}\)=14e2x x(2e2x) (2 logx+\(\frac{1}{x}\))
6. Differentiate \(e^{4x^5}.2x^{logx^2}\) with respect to x.
a) \(e^{4x^5}.x^{logx^2-1} (10x^5+log2x^2)\)
b) \(4e^{4x^5}.x^{logx^2-1} (10x^5+log2x^2)\)
c) \(4e^{4x^5}.x^{logx^2-1} (10x^5-log2x^2)\)
d) \(x^{logx^2 -1} (10x^4+log2x^2)\)
View Answer
Explanation: Consider y=\(e^{4x^5}+2x^{logx^2}\)
Applying log on both sides, we get
logy=\(loge^{4x^5} \,+ \,log2x^{logx^2}\)
logy=\(4x^5+logx^2 \,. \,log2x\)
logy=\(4x^5+2 \,logx \,log2x\)
Differentiating with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+2(\frac{d}{dx} \,(logx) \,log2x+\frac{d}{dx} \,(log2x) \,logx)\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+2\left (\frac{log2x}{x}+\frac{1}{2x}.2.logx\right )\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+\frac{2(log2x+logx)}{x}\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(20x^4+\frac{2(log2x^2)}{x}\)
\(\frac{dy}{dx}\)=\(y(20x^4+\frac{2(log2x^2)}{x})\)
\(\frac{dy}{dx}\)=\(e^{4x^5}.2x^{logx^2} (20x^4+\frac{2(log2x^2)}{x})\)
\(\frac{dy}{dx}\)=\(4e^{4x^5}.x^{logx^2 -1} (10x^5+log2x^2)\)
7. Differentiate 2(tanx)cotx with respect to x.
a) 2 csc2x.tanxcotx (1-log(tanx))
b) csc2x.tanxcotx (1-log(tanx))
c) 2 csc2x.tanxcotx (1+log(tanx))
d) 2tanxcotx (1-log(tanx))
View Answer
Explanation: Consider y=2(tanx)cotx
Applying log in both sides,
logy=log2(tanx)cotx
logy=log2+log(tanx)cotx
logy=log2+cotx log(tanx)
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}=0+\frac{d}{dx} \,(cotx) \,log(tanx)+cotx \frac{d}{dx} \,(log(tanx))\)
\(\frac{1}{y} \frac{dy}{dx}=-csc^{2}x.log(tanx)+cotx.\frac{1}{tanx}.sec^{2}x\)
\(\frac{dy}{dx} = y\left(-csc^{2x}.log(tanx)+\frac{(1+tan^{2x})}{tan^{2x}}\right)\)
\(\frac{dy}{dx}\)=2(tanx)cotx \(\left (-csc^{2x} log(tanx)+cot^{2x}+1 \right )\)
\(\frac{dy}{dx}\)=2(tanx)cotx \((-csc^{2x} log(tanx)+csc^{2x})\)
\(\frac{dy}{dx}\)=2(tanx)cotx (csc2x (1-log(tanx))
∴\(\frac{dy}{dx}\)=2 csc2x.tanxcotx (1-log(tanx))
8. Differentiate (3 cosx)x with respect to x.
a) (3 cosx)x (log(3 cosx)+x tanx)
b) (3 cosx)x (log(3 cosx)+tanx)
c) (cosx)^x (log(3 cosx)-x tanx)
d) (3 cosx)x (log(3 cosx)-x tanx)
View Answer
Explanation: Consider y=(3 cosx)x
Applying log on both sides, we get
logy=log(3 cosx)x
logy=x log(3 cosx)
logy=x(log3+log(cosx))
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx} =\frac{d}{dx} (x log3)+\frac{d}{dx} (x) log(cosx)+\frac{d}{dx}(log(cosx)).x\)
\(\frac{1}{y} \frac{dy}{dx}=log3+log(cosx)+\frac{1}{cosx}.-sinx.x\)
\(\frac{1}{y} \frac{dy}{dx}\)=log3+log(cosx)-x tanx
\(\frac{dy}{dx}\)=y(log(3 cosx)-x tanx)
\(\frac{dy}{dx}\)=(3 cosx)x (log(3 cosx)-x tanx)
9. Differentiate \(\sqrt{\frac{x+1}{3x-1}}\) with respect to x.
a) \(\frac{-2}{(3x-1)\sqrt{(3x-1)(x+1)}}\)
b) \(\frac{2}{(3x-1)\sqrt{(3x-1)(x+1)}}\)
c) \(\frac{1}{(3x-1)\sqrt{(3x-1)(x+1)}}\)
d) \(\frac{-2}{\sqrt{(3x-1)(x+1)}}\)
View Answer
Explanation: Consider y=\(\sqrt{\frac{x+1}{3x-1}}\)
Applying log to both sides, we get
logy=log\(\sqrt{\frac{x+1}{3x-1}}\)
logy=\(\frac{1}{2} log\left (\frac{x+1}{3x-1}\right )\)
logy=\(\frac{1}{2}\) (log(x+1)-log(3x-1))
Differentiating with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{1}{2}\left (\frac{d}{dx} (log(x+1))-\frac{d}{dx} (log(3x-1))\right )\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{1}{2}\left (\frac{1}{x+1}-\frac{3}{3x-1}\right )\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{1}{2}\left (\frac{3x-1-3x-3}{(x+1)(3x-1)})\right )\)
\(\frac{1}{y} \frac{dy}{dx}\)=\(\frac{1}{2}\left (\frac{-4}{(x+1)(3x-1)}\right )\)
\(\frac{dy}{dx}\)=\(\sqrt{\frac{x+1}{3x-1}} \left (\frac{-2}{(x+1)(3x-1)}\right )\)
\(\frac{dy}{dx}\)=\(\frac{-2}{(3x-1) \sqrt{(3x-1)(x+1)}}\)
10. Differentiate x3ex with respect to x.
a) 3e3x (3 logx+\(\frac{1}{x}\))
b) x3e3x.3e3x (3 logx-\(\frac{1}{x}\))
c) x3e3x (3 logx+\(\frac{1}{x}\))
d) x3e3x.3e3x (3 logx+\(\frac{1}{x}\))
View Answer
Explanation: Consider y=x3e3x
Applying log on both sides, we get
logy=3e3x logx
Differentiating both sides with respect to x, we get
\(\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} (3e^{3x}) logx+\frac{d}{dx} (logx)3e^{3x}\)
\(\frac{1}{y} \frac{dy}{dx}\)=3e3x.3.logx+\(\frac{1}{x}\) 3e3x
\(\frac{dy}{dx}\)=y(3e3x.3.logx+\(\frac{1}{x}\) 3e3x)
\(\frac{dy}{dx}\)=x3e3x.3e3x (3 logx+\(\frac{1}{x}\))
Sanfoundry Global Education & Learning Series – Mathematics – Class 12.
To practice all areas of Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
- Get Free Certificate of Merit in Mathematics - Class 12
- Participate in Mathematics - Class 12 Certification Contest
- Become a Top Ranker in Mathematics - Class 12
- Take Mathematics - Class 12 Tests
- Chapterwise Practice Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Chapterwise Mock Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Practice Class 12 - Physics MCQs
- Practice Class 12 - Chemistry MCQs
- Buy Class 12 - Mathematics Books
- Practice Class 12 - Biology MCQs
- Practice Class 11 - Mathematics MCQs