This set of Class 12 Maths Chapter 2 Multiple Choice Questions & Answers (MCQs) focuses on “Inverse Trigonometric Functions”. These MCQs are created based on the latest CBSE syllabus and the NCERT curriculum, offering valuable assistance for exam preparation.
1. \(tan^{-1}\sqrt{3}+sec^{-1}2 – cos^{-1}1\) is equal to ________
a) 0
b) \(\frac{2π}{3}\)
c) \(\frac{π}{3}\)
d) \(\frac{π}{4}\)
View Answer
Explanation: \(tan^{-1}\sqrt{3}=\frac{π}{3}, sec^{-1}2=\frac{π}{3}, cos^{-1}1=0\)
∴\(tan^{-1}\sqrt{3}+sec^{-1}2 -cos^{-1}1=\frac{π}{3}+\frac{π}{3}-0\)
=\(\frac{2π}{3}\).
2. What is the principle value of \(sec^{-1}(\frac{2}{\sqrt{3}})\).
a) \(\frac{π}{6}\)
b) \(\frac{π}{3}\)
c) \(\frac{π}{4}\)
d) \(\frac{π}{2}\)
View Answer
Explanation: Let \(sec^{-1}(\frac{2}{\sqrt{3}})\)=y
sec y=\(\frac{2}{\sqrt{3}}\)
sec y=sec \(\frac{π}{6}\)
⇒y=\(\frac{π}{6}\)
3. What is the value of \(tan^1\frac{1}{√3}-sin^{-1}1+ cos^{-1}\frac{1}{2}\) is ________
a) 2π
b) \(\frac{π}{2}\)
c) π
d) 0
View Answer
Explanation: \(tan^{-1}\frac{1}{\sqrt{3}}=\frac{π}{6},sin^{-1}1=\frac{π}{2}, cos^{-1}\frac{1}{2}=\frac{π}{3}\)
\(tan^1\frac{1}{\sqrt{3}}-sin^{-1}1+ cos^{-1}\frac{1}{2}=\frac{π}{6}+\frac{π}{2}+\frac{π}{3}=\frac{π+3π+2π}{6}=\frac{6π}{6}=π\)
4. [-1, 1] is the domain for which of the following inverse trigonometric functions?
a) sin-1x
b) cot-1x
c) tan-1x
d) sec-1x
View Answer
Explanation: [-1, 1] is the domain for sin-1x.
The domain for cot-1x is (-∞,∞).
The domain for tan-1x is (-∞,∞).
The domain for sec-1x is (-∞,-1]∪[1,∞).
5. The domain of sin-1(3x) is equal to _______
a) [-1, 1]
b) \([\frac{-1}{3}, \frac{1}{3}]\)
c) [-3, 3]
d) [-3π, 3π]
View Answer
Explanation: The domain of y=sin-1x is -1≤x≤1.
∴the domain of y=sin-13x is-1≤3x≤1
⇒ \([\frac{-1}{3} ≤ x ≤ \frac{1}{3}]\)
Hence, \([\frac{-1}{3}, \frac{1}{3}]\).
6. What is the value of 5 \(cos^{-1}\frac{1}{2} + 7 sin^{-1}(\frac{-1}{2})\) ?
a) –\(\frac{π}{2}\)
b) π
c) \(\frac{π}{2}\)
d) \(\frac{17π}{6}\)
View Answer
Explanation: \(cos^{-1}(\frac{1}{2})=\frac{π}{3} and sin^{-1}(-\frac{1}{2})=-\frac{π}{6}\)
∴ 5 \(cos^{-1}\frac{1}{2}+7 sin^{-1}(-\frac{1}{2}) =5(\frac{π}{3})+7(-\frac{π}{6})\)
=\(\frac{5π}{3}-\frac{7π}{6}=\frac{10π-7π}{6}=\frac{3π}{6}=\frac{π}{2}\)
7. Find the value of \(sin^{-1}(sin \frac{4π}{3})\) is _______
a) π
b) \(\frac{π}{3}\)
c) \(\frac{4π}{3}\)
d) –\(\frac{π}{3}\)
View Answer
Explanation: \(sin^{-1}(sinx)\)=x, x∈\([-\frac{π}{2},\frac{π}{2}]\)
∴\(sin^{-1} (sin \frac{4π}{3})=sin^{-1}(sin(π+\frac{π}{3}))=sin^{-1}(sin(\frac{-π}{3}))= -\frac{π}{3}\).
8. Find the value of \(cos(sin^{-1}\frac{\sqrt{3}}{2})\) is _____
a) \(\frac{\sqrt{3}}{2}\)
b) \(\frac{1}{4}\)
c) \(\frac{1}{2}\)
d) 0
View Answer
Explanation: \(sin\frac{π}{3}=\frac{\sqrt{3}}{2}\)
∴\(sin^{-1}\frac{\sqrt{3}}{2}=\frac{π}{3}\)
⇒\(cos(sin^{-1}\frac{\sqrt{3}}{2})=cos(\frac{π}{3})=\frac{1}{2}\).
9. If \(cos^{-1}x=y\), then which of the following is correct?
a) 0 ≤ y ≤ π
b) 0 < y < π
c) –\(\frac{π}{2}≤y≤\frac{π}{2}\)
d) –\(\frac{π}{2}<y<\frac{π}{2}\)
View Answer
Explanation: Given that, \(cos^{-1}x=y\)
The range of principle values for the inverse trigonometric function \(cos^{-1}\) is [0,π].
Hence, 0≤y≤π.
10. \(sin^{-1}x\) is same as \((sinx)^{-1}\).
a) True
b) False
View Answer
Explanation: The given statement is false. \(sin^{-1}x\) is not same as \((sinx)^{-1}\). \(sin^{-1}x\) is an inverse trigonometric function whereas \((sinx)^{-1}\) is just the reciprocal of sinx i.e. \(sinx=\frac{1}{sinx}\).
More MCQs on Class 12 Maths Chapter 2:
- Chapter 2 – Inverse Trigonometric Functions MCQ (Set 2)
- Chapter 2 – Inverse Trigonometric Functions MCQ (Set 3)
To practice all chapters and topics of class 12 Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.
If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]
- Practice Class 11 - Mathematics MCQs
- Practice Class 12 - Biology MCQs
- Check Class 12 - Mathematics Books
- Practice Class 12 - Chemistry MCQs
- Practice Class 12 - Physics MCQs