Mathematics Questions and Answers – Surface Area and Volume of Combination of Solids – 1

«
»

This set of Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Surface Area and Volume of Combination of Solids – 1”.

1. A solid is in the form of a cone mounted on a hemisphere. The radius and height of the cone are 3 m and 4 m. Find the surface area of the given solid.
a) 114.4 m2
b) 103.62 m2
c) 70 m2
d) 72.5 m2
View Answer

Answer: b
Explanation: Slant height = \(\sqrt {h^2 + r^2}\)
= \(\sqrt {4^2 + 3^2}\)
= √25
= 5 m
The surface area of the toy = C.S.A of the cone + C.S.A of the sphere
= πrl + 2πr2
= (3.14 × 3 × 5) + (2 × 3.14 × 32)
= 47.1 + 56.52
= 103.62 m2
advertisement

2. Two cubes each of volume 27 cm3 are joined together. Find the surface area of the resulting solid?
a) 109.4 cm2
b) 126 cm2
c) 150 cm2
d) 189.4 cm2
View Answer

Answer: b
Explanation: Volume of cube = a3 = 27
a = 3 cm
Joining 2 cubes results in a cuboid. Length of the cuboid (l) = 3 + 3 = 9 cm
Height of the cuboid (h) = 3 cm
Breadth of the cuboid (b) = 3 cm
Surface area of cuboid = 2(lb + bh + hl) = 2(27 + 9 + 27) = 126 cm2

3. A medicine capsule is in the form of a cylinder with two hemispheres joined together at the ends. Find the surface area if the length of the capsule is 14 mm and the width is 5 mm.
a) 219.8 mm2
b) 105 mm2
c) 115.4 mm2
d) 317.2 mm2
View Answer

Answer: a
Explanation: Radius of the common base (r) = 2.5 mm because the width of the capsule is equal to the diameter of the cylinder.
Length of the cylinder (h) = length of the capsule – 2(radius of the hemisphere) = 14 – 2(2.5) = 9 mm
The surface area of the capsule = C.S.A of the cylinder + 2(C.S.A of the hemisphere)
= 2πrh + 2(2πr2)
= (2 × 3.14 × 2.5 × 9) + 2(2 × 3.14 × 2.52)
= 219.8 mm2
advertisement
advertisement

4. A solid is in the form of a cone mounted on a hemisphere. The radius and height of the cone are 3 m and 4 m. Find the volume of the given solid?
a) 93.21 m3
b) 94.21 m3
c) 84.21 m3
d) 82.21 m3
View Answer

Answer: b
Explanation: Volume of the solid = volume of the cone + volume of the hemisphere
= \(\frac {1}{3}\)πr2h + \(\frac {2}{3}\)πr3
= (\(\frac {1}{3}\) × 3.14 × 32 × 4) + (\(\frac {2}{3}\) × 3.14 × 33)
= 94.21 m3

5. What is the length of the resulting solid if two identical cubes of side 8 cm are joined end to end?
a) 26 cm
b) 16 cm
c) 21 cm
d) 14 cm
View Answer

Answer: b
Explanation: Length of resulting cuboid = 2 × side of the cube
= 2 × 8 cm
= 16 cm
advertisement

6. Two cubes each of volume 64 cm3 are joined together. Find the volume of the resulting solid?
a) 152.76 cm3
b) 154 cm3
c) 256 cm3
d) 141.76 cm3
View Answer

Answer: c
Explanation: Volume of cube = a3 = 64
a = 4 cm is the side of each cube.
Joining 2 cubes results in a cuboid. Length of the cuboid (l) = 4 + 4 = 16 cm
Height of the cuboid (h) = 4 cm
Breadth of the cuboid (b) = 4 cm
The volume of the cuboid = lbh = 16 × 4 × 4
= 256 cm3

7. What is the skeletal formula to find the T.S.A of the tank consisting of a circular cylinder with a hemisphere attached on either end?
a) 2πrh + 2(2πr3)
b) 2πrh + 2(πr2)
c) 2πrh + 2(\(\frac {2}{3}\)πr2)
d) 2πrh + 2(2πr2)
View Answer

Answer: d
Explanation: T.S.A of the tank = C.S.A of the cylinder + 2(C.S.A of the hemisphere)
= 2πrh + 2(2πr2)
advertisement

8. What is the formula to find the height of the tank consisting of a circular cylinder with a hemisphere attached on either end?
a) Radius of the cylinder + 2(height of the hemisphere)
b) Height of the cylinder + 2(height of the hemisphere)
c) Radius of the cylinder + 2(radius of the hemisphere)
d) Height of the cylinder + 2(radius of the hemisphere)
View Answer

Answer: d
Explanation: To find the height of the tank consisting of a circular cylinder with a hemisphere attached on either end requires the height of the cylinder and radius of the hemisphere.
Height of the tank = height of the cylinder + 2(radius of the hemisphere)

9. What is the C.S.A of resulting solid if two identical cubes are joined end to end together with the length of the sides of the cube is 4 m?
a) 160 cm2
b) 205.6 cm2
c) 168.23 cm2
d) 604 cm2
View Answer

Answer: a
Explanation: Cuboid is the resulting solid when two identical cubes are joined end to end together.
Length of the cuboid (l) = 4 + 4 = 16 cm
Height of the cuboid (h) = 4 cm
Breadth of the cuboid (b) = 4 cm
The curved surface area of cuboid = 2h(l + b) = (2 × 4)(16 + 4)
= 160 cm2
advertisement

10. What is the formula required to find the height of a solid in the form of a right circular cylinder with a hemisphere at one end and a cone at the other end?
a) 4793 m3
b) 2763 m3
c) 2783 m3
d) 4783 m3
View Answer

Answer: c
Explanation: To find the height of the solid we require the height of the cone, height of the cylinder and the radius of the hemisphere.
Height of the solid = height of the cone + height of the cylinder + radius of the hemisphere

Sanfoundry Global Education & Learning Series – Mathematics – Class 10.

To practice all areas of Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

advertisement
advertisement
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He is Linux Kernel Developer & SAN Architect and is passionate about competency developments in these areas. He lives in Bangalore and delivers focused training sessions to IT professionals in Linux Kernel, Linux Debugging, Linux Device Drivers, Linux Networking, Linux Storage, Advanced C Programming, SAN Storage Technologies, SCSI Internals & Storage Protocols such as iSCSI & Fiber Channel. Stay connected with him @ LinkedIn | Youtube | Instagram | Facebook | Twitter