This set of Signals & Systems Multiple Choice Questions & Answers (MCQs) focuses on “Continuous Time Convolution – 1”.
For all the following questions, ‘*’ indicates convolution. $ indicates integral
1. Find the value of h[n]*d[n-1], d[n] being the delta function.
a) h[n-2].
b) h[n].
c) h[n-1].
d) h[n+1].
View Answer
Explanation: Convolution of a function with a delta function shifts accordingly.
2. Evaluate (exp(-at)u(t))*u(t), u(t) being the heaviside function.
a) (1-exp(at)) u(t)/a
b) (1-exp(at)) u(-t)/a
c) (1-exp(-at)) u(t)/a
d) (1+exp(-at)) u(t)/a
View Answer
Explanation: Use the convolution formula.
3. Find the value of h[n]*d[n-5], d[n] being the delta function.
a) h[n-2].
b) h[n-5].
c) h[n-4].
d) h[n+5].
View Answer
Explanation: Convolution of a function with a delta function shifts accordingly.
4. Evaluate (exp(-4t)u(t))*u(t), u(t) being the heaviside function.
a) (1-exp(4t)) u(t)/a
b) (1-exp(-4t)) u(t)/a
c) (1-exp(=4t)) u(t)/a
d) (1+exp(-4t)) u(t)/a
View Answer
Explanation: Use the convolution formula.
5. Find the value of h[n-1]*d[n-1], d[n] being the delta function.
a) h[n-2].
b) h[n].
c) h[n-1].
d) h[n+1].
View Answer
Explanation: Convolution of a function with a delta function shifts accordingly.
6. Find the convolution of x(t) = exp(2t)u(-t), and h(t) = u(t-3)
a) 0.5exp(2t-6) u(-t+3) + 0.5u(t-3)
b) 0.5exp(2t-3) u(-t+3) + 0.8u(t-3)
c) 0.5exp(2t-6) u(-t+3) + 0.5u(t-6)
d) 0.5exp(2t-6) u(-t+3) + 0.8u(t-3)
View Answer
Explanation: Divide it into 2 sectors and apply the convolution formula.
7. Find the value of h[n]*d[n+1], d[n] being the delta function.
a) h[n-2].
b) h[n].
c) h[n-1].
d) h[n+1].
View Answer
Explanation: Convolution of a function with a delta function shifts accordingly.
8. Find the convolution of x(t) = exp(3t)u(-t), and h(t) = u(t-3)
a) 0.33exp(2t-6) u(-t+3) + 0.5u(t-3)
b) 0.5exp(4t-3) u(-t+3) + 0.8u(t-3)
c) 0.33exp(2t-6) u(-t+3) + 0.5u(t-6)
d) 0.33exp(3t-6) u(-t+3) + 0.33u(t-3)
View Answer
Explanation: Divide it into 2 sectors and apply the convolution formula.
9. Find the value of d(t-34)*x(t+56), d(t) being the delta function.
a) x(t + 56)
b) x(t + 32)
c) x(t + 22)
d) x(t – 22)
View Answer
Explanation: Convolution of a function with a delta function shifts accordingly.
10. Find x(t)*u(t)
a) tx(t)
b) t2x(t)
c) $x(t2)
d) $x(t)
View Answer
Explanation: Apply the convolution formula. The above corollary exists for any x(t) [not impulsive].
Sanfoundry Global Education & Learning Series – Signals & Systems.
To practice all areas of Signals & Systems, here is complete set of 1000+ Multiple Choice Questions and Answers.