This C++ Program demonstrates operations on LeftList Heap.
Here is source code of the C++ Program to demonstrate LeftList Heap. The C++ program is successfully compiled and run on a Linux system. The program output is also shown below.
/*
* C++ Program to Implement LeftList Heap
*/
#include <iostream>
#include <cstdlib>
using namespace std;
/*
* Node Class Declaration
*/
class LeftistNode
{
public:
int element;
LeftistNode *left;
LeftistNode *right;
int npl;
LeftistNode(int & element, LeftistNode *lt = NULL,
LeftistNode *rt = NULL, int np = 0)
{
this->element = element;
right = rt;
left = lt,
npl = np;
}
};
/*
* Class Declaration
*/
class LeftistHeap
{
public:
LeftistHeap();
LeftistHeap(LeftistHeap &rhs);
~LeftistHeap();
bool isEmpty();
bool isFull();
int &findMin();
void Insert(int &x);
void deleteMin();
void deleteMin(int &minItem);
void makeEmpty();
void Merge(LeftistHeap &rhs);
LeftistHeap & operator=(LeftistHeap &rhs);
private:
LeftistNode *root;
LeftistNode *Merge(LeftistNode *h1, LeftistNode *h2);
LeftistNode *Merge1(LeftistNode *h1, LeftistNode *h2);
void swapChildren(LeftistNode * t);
void reclaimMemory(LeftistNode * t);
LeftistNode *clone(LeftistNode *t);
};
/*
* Construct the leftist heap.
*/
LeftistHeap::LeftistHeap()
{
root = NULL;
}
/*
* Copy constructor.
*/
LeftistHeap::LeftistHeap(LeftistHeap &rhs)
{
root = NULL;
*this = rhs;
}
/*
* Destruct the leftist heap.
*/
LeftistHeap::~LeftistHeap()
{
makeEmpty( );
}
/*
* Merge rhs into the priority queue.
* rhs becomes empty. rhs must be different from this.
*/
void LeftistHeap::Merge(LeftistHeap &rhs)
{
if (this == &rhs)
return;
root = Merge(root, rhs.root);
rhs.root = NULL;
}
/*
* Internal method to merge two roots.
* Deals with deviant cases and calls recursive Merge1.
*/
LeftistNode *LeftistHeap::Merge(LeftistNode * h1, LeftistNode * h2)
{
if (h1 == NULL)
return h2;
if (h2 == NULL)
return h1;
if (h1->element < h2->element)
return Merge1(h1, h2);
else
return Merge1(h2, h1);
}
/*
* Internal method to merge two roots.
* Assumes trees are not empty, and h1's root contains smallest item.
*/
LeftistNode *LeftistHeap::Merge1(LeftistNode * h1, LeftistNode * h2)
{
if (h1->left == NULL)
h1->left = h2;
else
{
h1->right = Merge(h1->right, h2);
if (h1->left->npl < h1->right->npl)
swapChildren(h1);
h1->npl = h1->right->npl + 1;
}
return h1;
}
/*
* Swaps t's two children.
*/
void LeftistHeap::swapChildren(LeftistNode * t)
{
LeftistNode *tmp = t->left;
t->left = t->right;
t->right = tmp;
}
/*
* Insert item x into the priority queue, maintaining heap order.
*/
void LeftistHeap::Insert(int &x)
{
root = Merge(new LeftistNode(x), root);
}
/*
* Find the smallest item in the priority queue.
* Return the smallest item, or throw Underflow if empty.
*/
int &LeftistHeap::findMin()
{
return root->element;
}
/*
* Remove the smallest item from the priority queue.
* Throws Underflow if empty.
*/
void LeftistHeap::deleteMin()
{
LeftistNode *oldRoot = root;
root = Merge(root->left, root->right);
delete oldRoot;
}
/*
* Remove the smallest item from the priority queue.
* Pass back the smallest item, or throw Underflow if empty.
*/
void LeftistHeap::deleteMin(int &minItem)
{
if (isEmpty())
{
cout<<"Heap is Empty"<<endl;
return;
}
minItem = findMin();
deleteMin();
}
/*
* Test if the priority queue is logically empty.
* Returns true if empty, false otherwise.
*/
bool LeftistHeap::isEmpty()
{
return root == NULL;
}
/*
* Test if the priority queue is logically full.
* Returns false in this implementation.
*/
bool LeftistHeap::isFull()
{
return false;
}
/*
* Make the priority queue logically empty.
*/
void LeftistHeap::makeEmpty()
{
reclaimMemory(root);
root = NULL;
}
/*
* Deep copy.
*/
LeftistHeap &LeftistHeap::operator=(LeftistHeap & rhs)
{
if (this != &rhs)
{
makeEmpty();
root = clone(rhs.root);
}
return *this;
}
/*
* Internal method to make the tree empty.
*/
void LeftistHeap::reclaimMemory(LeftistNode * t)
{
if (t != NULL)
{
reclaimMemory(t->left);
reclaimMemory(t->right);
delete t;
}
}
/*
* Internal method to clone subtree.
*/
LeftistNode *LeftistHeap::clone(LeftistNode * t)
{
if (t == NULL)
return NULL;
else
return new LeftistNode(t->element, clone(t->left), clone(t->right), t->npl);
}
int main()
{
LeftistHeap h;
LeftistHeap h1;
LeftistHeap h2;
for (int i = 0; i < 20; i++)
{
if (i % 2 == 0)
{
h.Insert(i);
cout<<"Element"<<i<<" inserted in Heap 1"<<endl;
}
else
{
h1.Insert(i);
cout<<"Element"<<i<<" inserted in Heap 2"<<endl;
}
}
h.Merge(h1);
h2 = h;
for (int i = 0; i < 20; i++)
{
int x;
h2.deleteMin(x);
cout<<"Element "<<x<<" Deleted"<<endl;
if (h2.isEmpty())
{
cout<<"The Heap is Empty"<<endl;
break;
}
}
return 0;
}
$ g++ leftlistheap.cpp $ a.out Element0 inserted in Heap 1 Element1 inserted in Heap 2 Element2 inserted in Heap 1 Element3 inserted in Heap 2 Element4 inserted in Heap 1 Element5 inserted in Heap 2 Element6 inserted in Heap 1 Element7 inserted in Heap 2 Element8 inserted in Heap 1 Element9 inserted in Heap 2 Element10 inserted in Heap 1 Element11 inserted in Heap 2 Element12 inserted in Heap 1 Element13 inserted in Heap 2 Element14 inserted in Heap 1 Element15 inserted in Heap 2 Element16 inserted in Heap 1 Element17 inserted in Heap 2 Element18 inserted in Heap 1 Element19 inserted in Heap 2 Element 0 Deleted Element 1 Deleted Element 2 Deleted Element 3 Deleted Element 4 Deleted Element 5 Deleted Element 6 Deleted Element 7 Deleted Element 8 Deleted Element 9 Deleted Element 10 Deleted Element 11 Deleted Element 12 Deleted Element 13 Deleted Element 14 Deleted Element 15 Deleted Element 16 Deleted Element 17 Deleted Element 18 Deleted Element 19 Deleted The Heap is Empty ------------------ (program exited with code: 0) Press return to continue
Sanfoundry Global Education & Learning Series – 1000 C++ Programs.
advertisement
advertisement
If you wish to look at all C++ Programming examples, go to C++ Programs.
If you find any mistake above, kindly email to [email protected]Related Posts:
- Check Programming Books
- Check Computer Science Books
- Check Data Structure Books
- Practice Computer Science MCQs
- Practice Design & Analysis of Algorithms MCQ