C Program to Find the Size of Largest Independent Set (LIS) in a Binary Tree

This is a C Program to find the size of largest independent set in a given binary tree. Given a Binary Tree, find size of the Largest Independent Set(LIS) in it. A subset of all tree nodes is an independent set if there is no edge between any two nodes of the subset.
For example, consider the following binary tree. The largest independent set(LIS) is {10, 40, 60, 70, 80} and size of the LIS is 5.

Here is source code of the C Program to Find Size of the Largest Independent Set(LIS) in a Given a Binary Tree. The C program is successfully compiled and run on a Linux system. The program output is also shown below.

  1. // A naive recursive implementation of Largest Independent Set problem
  2. #include <stdio.h>
  3. #include <stdlib.h>
  4.  
  5. // A utility function to find max of two integers
  6. int max(int x, int y) {
  7.     return (x > y) ? x : y;
  8. }
  9.  
  10. /* A binary tree node has data, pointer to left child and a pointer to
  11.  right child */
  12. struct node {
  13.     int data;
  14.     struct node *left, *right;
  15. };
  16.  
  17. // The function returns size of the largest independent set in a given
  18. // binary tree
  19. int LISS(struct node *root) {
  20.     if (root == NULL)
  21.         return 0;
  22.  
  23.     // Caculate size excluding the current node
  24.     int size_excl = LISS(root->left) + LISS(root->right);
  25.  
  26.     // Calculate size including the current node
  27.     int size_incl = 1;
  28.     if (root->left)
  29.         size_incl += LISS(root->left->left) + LISS(root->left->right);
  30.     if (root->right)
  31.         size_incl += LISS(root->right->left) + LISS(root->right->right);
  32.  
  33.     // Return the maximum of two sizes
  34.     return max(size_incl, size_excl);
  35. }
  36.  
  37. // A utility function to create a node
  38. struct node* newNode(int data) {
  39.     struct node* temp = (struct node *) malloc(sizeof(struct node));
  40.     temp->data = data;
  41.     temp->left = temp->right = NULL;
  42.     return temp;
  43. }
  44.  
  45. // Driver program to test above functions
  46. int main() {
  47.     // Let us construct the tree given in the above diagram
  48.     struct node *root = newNode(20);
  49.     root->left = newNode(8);
  50.     root->left->left = newNode(4);
  51.     root->left->right = newNode(12);
  52.     root->left->right->left = newNode(10);
  53.     root->left->right->right = newNode(14);
  54.     root->right = newNode(22);
  55.     root->right->right = newNode(25);
  56.  
  57.     printf("Size of the Largest Independent Set is %d ", LISS(root));
  58.  
  59.     return 0;
  60. }

Output:

$ gcc LargestIndependentSetBinaryTree.c
$ ./a.out
 
Size of the Largest Independent Set is 5

Sanfoundry Global Education & Learning Series – 1000 C Programs.

advertisement
advertisement

Here’s the list of Best Books in C Programming, Data Structures and Algorithms.

If you find any mistake above, kindly email to [email protected]

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.