This is a C Program to creat a balanced binary search tree. AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes.
Here is source code of the C Program to Create a Balanced Binary Tree of the Incoming Data. The C program is successfully compiled and run on a Linux system. The program output is also shown below.
#include<stdio.h>
#include<stdlib.h>
// An AVL tree node
struct node {
int key;
struct node *left;
struct node *right;
int height;
};
// A utility function to get maximum of two integers
int max(int a, int b);
// A utility function to get height of the tree
int height(struct node *N) {
if (N == NULL)
return 0;
return N->height;
}
// A utility function to get maximum of two integers
int max(int a, int b) {
return (a > b) ? a : b;
}
/* Helper function that allocates a new node with the given key and
NULL left and right pointers. */
struct node* newNode(int key) {
struct node* node = (struct node*) malloc(sizeof(struct node));
node->key = key;
node->left = NULL;
node->right = NULL;
node->height = 1; // new node is initially added at leaf
return (node);
}
// A utility function to right rotate subtree rooted with y
// See the diagram given above.
struct node *rightRotate(struct node *y) {
struct node *x = y->left;
struct node *T2 = x->right;
// Perform rotation
x->right = y;
y->left = T2;
// Update heights
y->height = max(height(y->left), height(y->right)) + 1;
x->height = max(height(x->left), height(x->right)) + 1;
// Return new root
return x;
}
// A utility function to left rotate subtree rooted with x
// See the diagram given above.
struct node *leftRotate(struct node *x) {
struct node *y = x->right;
struct node *T2 = y->left;
// Perform rotation
y->left = x;
x->right = T2;
// Update heights
x->height = max(height(x->left), height(x->right)) + 1;
y->height = max(height(y->left), height(y->right)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(struct node *N) {
if (N == NULL)
return 0;
return height(N->left) - height(N->right);
}
struct node* insert(struct node* node, int key) {
/* 1. Perform the normal BST rotation */
if (node == NULL)
return (newNode(key));
if (key < node->key)
node->left = insert(node->left, key);
else
node->right = insert(node->right, key);
/* 2. Update height of this ancestor node */
node->height = max(height(node->left), height(node->right)) + 1;
/* 3. Get the balance factor of this ancestor node to check whether
this node became unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced, then there are 4 cases
// Left Left Case
if (balance > 1 && key < node->left->key)
return rightRotate(node);
// Right Right Case
if (balance < -1 && key > node->right->key)
return leftRotate(node);
// Left Right Case
if (balance > 1 && key > node->left->key) {
node->left = leftRotate(node->left);
return rightRotate(node);
}
// Right Left Case
if (balance < -1 && key < node->right->key) {
node->right = rightRotate(node->right);
return leftRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
// A utility function to print preorder traversal of the tree.
// The function also prints height of every node
void preOrder(struct node *root) {
if (root != NULL) {
printf("%d ", root->key);
preOrder(root->left);
preOrder(root->right);
}
}
/* Drier program to test above function*/
int main() {
struct node *root = NULL;
/* Constructing tree given in the above figure */
root = insert(root, 10);
root = insert(root, 20);
root = insert(root, 30);
root = insert(root, 40);
root = insert(root, 50);
root = insert(root, 25);
/* The constructed AVL Tree would be
30
/ \
20 40
/ \ \
10 25 50
*/
printf("Pre order traversal of the constructed Balanced Binary tree is \n");
preOrder(root);
return 0;
}
Output:
$ gcc BalancedBinaryTree.c $ ./a.out Pre order traversal of the constructed Balanced Binary tree is 30 20 10 25 40 50
Sanfoundry Global Education & Learning Series – 1000 C Programs.
advertisement
advertisement
Here’s the list of Best Books in C Programming, Data Structures and Algorithms.
Related Posts:
- Practice Computer Science MCQs
- Check C Books
- Apply for C Internship
- Practice BCA MCQs
- Watch Advanced C Programming Videos