Design of Steel Structures Questions and Answers – Bolted Connections – III

This set of Design of Steel Structures Interview Questions and Answers for freshers focuses on “Bolted Connections – III”.

1. Which of the following equation is correct for bolt subjected to combined shear and tension?
a) (Vsb/Vdb)2 + (Tsb/Tdb)2 ≤ 1
b) (Vsb/Vdb)2 + (Tsb/Tdb)2 ≥ 1
c) (Vsb/Vdb) + (Tsb/Tdb) ≤ 1
d) (Vsb/Vdb) + (Tsb/Tdb) ≥ 1
View Answer

Answer: a
Explanation: Bolt required to satisfy both shear and tension at the same time should satisfy (Vsb/Vdb)2 + (Tsb/Tdb)2 ≤ 1 , where Vsb= factored shear force, Vdb = design shear capacity, Tsb = factored tensile force, Tdb= design tensile capacity.

2. Shear Capacity of HSFG bolts is
a) μfnekhFo
b) μfnekhFoγmf
c) μfnekhoγmf
d) μfnekhFomf
View Answer

Answer: d
Explanation: Shear Capacity of HSFG bolts is μfnekhFomf, where μf = coefficient of friction(0.55), ne = number of frictional interfaces offering frictional resistance to slip, kh = 1 for fasteners in clearance holes, 0.85 for fasteners in over sized and short slotted holes, γmf = 1.1 (slip resistance designed at service load), 1.25 (slip resistance designed at ultimate load), Fo = minimum bolt tension = Anbf0 , where Anb = net area of bolt, f0 = 0.7fub , fub = ultimate tensile stress of bolt.

3. The maximum number of bolts of diameter 25mm that can be accomodated in one row in 200mm wide flat are:
a) 2
b) 3
c) 4
d) 5
View Answer

Answer: b
Explanation: Minimum end distance = 2.5×25 = 62.5mm
Number of bolts that can be accommodated = (200-2×62.5)/25 = 3 bolts.
advertisement
advertisement

4. Calculate strength in shear of 16mm diameter of bolt of grade 4.6 for lap joint
a) 50 kN
b) 40 kN
c) 29 kN
d) 59 kN
View Answer

Answer: c
Explanation: Bolts will be in single shear. Diameter of bolt = 16mm. Net area = 0.78x(π/4)x162=156.83mm2.
Strength of bolt in shear = Anbfub/(√3 x 1.25) = 156.83x400x10-3/1.25x√3 = 28.97kN.

5. What is the value of kb in nominal bearing strength for a bolt of 20mm diameter of grade 4.6?
a) 0.5
b) 1
c) 0.97
d) 2
View Answer

Answer: a
Explanation: diameter of bolt = 20mm, diameter of hole = 20+2 =22mm
e=1.5×22=33mm, p=2.5×20=50mm
e/3d0 = 33/(3×22) = 0.5, p/3d0 -0.25 = 50/(3×22) -0.25=0.5, fub /fb = 400/410=0.975
kb = minimum of (e/3d0 , p/3d0 -0.25, fub /fb, 1) = 0.5.

6. Calculate bearing strength of 20mm diameter bolt of grade 4.6 for joining main plates of 10mm thick using cover plate of 8mm thick using single cover butt joint.
a) 70.26 kN
b) 109.82 kN
c) 50.18 kN
d) 29.56 kN
View Answer

Answer: c
Explanation: diameter of bolt = 16mm, diameter of hole =16+2 =18mm
e=1.5×18=27mm, p=2.5×16=40mm
e/3d0 = 27/(3×18) = 0.5, p/3d0 -0.25 = 40/(3×18) -0.25=0.49, fub /fb = 400/410=0.975
kb = minimum of (e/3d0, p/3d0 -0.25, fub /fb,1) = 0.49
bearing strength = 2.5kbdtfu/1.25 = 2.5×0.49x16x8x400x10-3/1.25 = 50.18 kN.

7. Find the number of HSFG bolts of diameter 20mm, grade 88 for connection of member carrying factored tensile load of 200kN when no slip is permitted.
a) 5
b) 4
c) 3
d) 2
View Answer

Answer: b
Explanation: Fo=0.7fubAnb=0.7x800x0.78x(π/4)x202x10-3=137.22 kN
Assume μf=0.5, ne=1, kh=1
Slip resistance of bolt = μf ne kh Fo/1.25 = 0.5x1x1x137.22/1.25 =54.88 kN
Number of bolts required = 200/54.88 = 3.64 = 4(approximately).
advertisement

8. What is the efficiency of joint when strength of bolt per pitch length is 60kN and strength of plate per pitch length is 150kN?
a) 25%
b) 30%
c) 35%
d) 40%
View Answer

Answer: d
Explanation: Efficiency = (strength of bolt per pitch length/ strength of plate per pitch length)x100 = 60×100/150 = 40%.

9. Strength of bolt is
a) minimum of shear strength and bearing capacity of bolt
b) maximum of shear strength and bearing capacity of bolt
c) shear strength of bolt
d) bearing capacity of bolt
View Answer

Answer: a
Explanation: Strength of bolt is minimum of shear strength and bearing capacity of bolt. Design shear strength = nominal shear capacity/1.25, Design bearing strength = nominal bearing capacity/1.25.
advertisement

10. Prying forces are
a) friction forces
b) shear forced
c) tensile forces
d) bending forces
View Answer

Answer: c
Explanation: In connections subjected to tensile stresses, the flexibility of connected parts can lead to deformations that increases tension applied to bolts. This additional tension is called prying force.

Sanfoundry Global Education & Learning Series – Design of Steel Structures.

To practice all areas of Design of Steel Structures for Interviews, here is complete set of 1000+ Multiple Choice Questions and Answers.

If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.