This C++ program implements the Edmonds_Karp Algorithm which is used to compute the maximum flow between the sink and source vertex. It is the same as the Ford-Fulkersson Algorithm except that it uses breadth first search to reduce time complexity.
Here is the source code of the C++ program to display the maximum flow by giving the sink and source nodes as input along with the directed graph. This C++ program is successfully compiled and run on DevCpp, a C++ compiler.The program output is given below.
/*
* C++ Program to Implement The Edmonds-Karp Algorithm
*/
#include<cstdio>
#include<cstdio>
#include<queue>
#include<cstring>
#include<vector>
#include<iostream>
#include<conio.h>
using namespace std;
int capacities[10][10];
int flowPassed[10][10];
vector<int> graph[10];
int parentsList[10];
int currentPathCapacity[10];
int bfs(int startNode, int endNode)
{
memset(parentsList, -1, sizeof(parentsList));
memset(currentPathCapacity, 0, sizeof(currentPathCapacity));
queue<int> q;
q.push(startNode);
parentsList[startNode] = -2;
currentPathCapacity[startNode] = 999;
while(!q.empty())
{
int currentNode = q.front();
q.pop();
for(int i=0; i<graph[currentNode].size(); i++)
{
int to = graph[currentNode][i];
if(parentsList[to] == -1)
{
if(capacities[currentNode][to] - flowPassed[currentNode][to] > 0)
{
parentsList[to] = currentNode;
currentPathCapacity[to] = min(currentPathCapacity[currentNode],
capacities[currentNode][to] - flowPassed[currentNode][to]);
if(to == endNode)
{
return currentPathCapacity[endNode];
}
q.push(to);
}
}
}
}
return 0;
}
int edmondsKarp(int startNode, int endNode)
{
int maxFlow = 0;
while(true)
{
int flow = bfs(startNode, endNode);
if (flow == 0)
{
break;
}
maxFlow += flow;
int currentNode = endNode;
while(currentNode != startNode)
{
int previousNode = parentsList[currentNode];
flowPassed[previousNode][currentNode] += flow;
flowPassed[currentNode][previousNode] -= flow;
currentNode = previousNode;
}
}
return maxFlow;
}
int main()
{
int nodesCount, edgesCount;
cout<<"enter the number of nodes and edges\n";
cin>>nodesCount>>edgesCount;
int source, sink;
cout<<"enter the source and sink\n";
cin>>source>>sink;
for(int edge = 0; edge < edgesCount; edge++)
{
cout<<"enter the start and end vertex alongwith capacity\n";
int from, to, capacity;
cin>>from>>to>>capacity;
capacities[from][to] = capacity;
graph[from].push_back(to);
graph[to].push_back(from);
}
int maxFlow = edmondsKarp(source, sink);
cout<<endl<<endl<<"Max Flow is:"<<maxFlow<<endl;
getch();
}
Output enter the number of nodes and edges 6 10 enter the source and sink 0 5 enter the start and end vertex alongwith capacity 0 1 16 enter the start and end vertex alongwith capacity 0 2 13 enter the start and end vertex alongwith capacity 1 2 10 enter the start and end vertex alongwith capacity 2 1 4 enter the start and end vertex alongwith capacity 1 3 12 enter the start and end vertex alongwith capacity 3 2 9 enter the start and end vertex alongwith capacity 2 4 14 enter the start and end vertex alongwith capacity 4 3 7 enter the start and end vertex alongwith capacity 4 5 4 enter the start and end vertex alongwith capacity 3 5 20 Max Flow is:23
Sanfoundry Global Education & Learning Series – 1000 C++ Programs.
advertisement
advertisement
If you wish to look at all C++ Programming examples, go to C++ Programs.
If you find any mistake above, kindly email to [email protected]Related Posts:
- Practice Computer Science MCQs
- Check C++ Books
- Apply for Computer Science Internship
- Check Programming Books
- Apply for C++ Internship