This is a C++ Program to find vertex connectivity of a graph. A vertex in an undirected connected graph is an articulation point (or cut vertex) iff removing it (and edges through it) disconnects the graph. Articulation points represent vulnerabilities in a connected network – single points whose failure would split the network into 2 or more disconnected components. They are useful for designing reliable networks
Here is source code of the C++ Program to Find the Vertex Connectivity of a Graph. The C++ program is successfully compiled and run on a Linux system. The program output is also shown below.
// A C++ program to find articulation points in a given undirected graph
#include<iostream>
#include <list>
#define NIL -1
using namespace std;
// A class that represents an undirected graph
class Graph
{
int V; // No. of vertices
list<int> *adj; // A dynamic array of adjacency lists
void APUtil(int v, bool visited[], int disc[], int low[], int parent[],
bool ap[]);
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // function to add an edge to graph
void AP(); // prints articulation points
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int> [V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
adj[w].push_back(v); // Note: the graph is undirected
}
// A recursive function that find articulation points using DFS traversal
// u --> The vertex to be visited next
// visited[] --> keeps tract of visited vertices
// disc[] --> Stores discovery times of visited vertices
// parent[] --> Stores parent vertices in DFS tree
// ap[] --> Store articulation points
void Graph::APUtil(int u, bool visited[], int disc[], int low[], int parent[],
bool ap[])
{
// A static variable is used for simplicity, we can avoid use of static
// variable by passing a pointer.
static int time = 0;
// Count of children in DFS Tree
int children = 0;
// Mark the current node as visited
visited[u] = true;
// Initialize discovery time and low value
disc[u] = low[u] = ++time;
// Go through all vertices aadjacent to this
list<int>::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i; // v is current adjacent of u
// If v is not visited yet, then make it a child of u
// in DFS tree and recur for it
if (!visited[v])
{
children++;
parent[v] = u;
APUtil(v, visited, disc, low, parent, ap);
// Check if the subtree rooted with v has a connection to
// one of the ancestors of u
low[u] = min(low[u], low[v]);
// u is an articulation point in following cases
// (1) u is root of DFS tree and has two or more chilren.
if (parent[u] == NIL && children > 1)
ap[u] = true;
// (2) If u is not root and low value of one of its child is more
// than discovery value of u.
if (parent[u] != NIL && low[v] >= disc[u])
ap[u] = true;
}
// Update low value of u for parent function calls.
else if (v != parent[u])
low[u] = min(low[u], disc[v]);
}
}
// The function to do DFS traversal. It uses recursive function APUtil()
void Graph::AP()
{
// Mark all the vertices as not visited
bool *visited = new bool[V];
int *disc = new int[V];
int *low = new int[V];
int *parent = new int[V];
bool *ap = new bool[V]; // To store articulation points
// Initialize parent and visited, and ap(articulation point) arrays
for (int i = 0; i < V; i++)
{
parent[i] = NIL;
visited[i] = false;
ap[i] = false;
}
// Call the recursive helper function to find articulation points
// in DFS tree rooted with vertex 'i'
for (int i = 0; i < V; i++)
if (visited[i] == false)
APUtil(i, visited, disc, low, parent, ap);
// Now ap[] contains articulation points, print them
for (int i = 0; i < V; i++)
if (ap[i] == true)
cout << i << " ";
}
// Driver program to test above function
int main()
{
// Create graphs given in above diagrams
cout << "\nArticulation points in first graph \n";
Graph g1(5);
g1.addEdge(1, 0);
g1.addEdge(0, 2);
g1.addEdge(2, 1);
g1.addEdge(0, 3);
g1.addEdge(3, 4);
g1.AP();
cout << "\nArticulation points in second graph \n";
Graph g2(4);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 3);
g2.AP();
cout << "\nArticulation points in third graph \n";
Graph g3(7);
g3.addEdge(0, 1);
g3.addEdge(1, 2);
g3.addEdge(2, 0);
g3.addEdge(1, 3);
g3.addEdge(1, 4);
g3.addEdge(1, 6);
g3.addEdge(3, 5);
g3.addEdge(4, 5);
g3.AP();
return 0;
}
Output:
$ g++ VertexConnectivity.cpp $ a.out Articulation points in first graph 0 3 Articulation points in second graph 1 2 Articulation points in third graph 1 ------------------ (program exited with code: 0) Press return to continue
Sanfoundry Global Education & Learning Series – 1000 C++ Programs.
advertisement
advertisement
Here’s the list of Best Books in C++ Programming, Data Structures and Algorithms.
Next Steps:
- Get Free Certificate of Merit in C++ Programming
- Participate in C++ Programming Certification Contest
- Become a Top Ranker in C++ Programming
- Take C++ Programming Tests
- Chapterwise Practice Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- Chapterwise Mock Tests: Chapter 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Related Posts:
- Apply for Computer Science Internship
- Buy Programming Books
- Apply for C++ Internship
- Buy C++ Books
- Practice Computer Science MCQs