This C++ program displays the Ford-Fulkersson Algorithm which computes the maximum flow present inside a network.
Here is the source code of the C++ program to display the maximum flow present inside a directed graph given as an input. This C++ program is successfully compiled and run on DevCpp, a C++ compiler. The program output is given below.
/*
* C++ Program to Implement Ford–Fulkerson Algorithm
*/
#include <iostream>
#include <string.h>
#include <queue>
using namespace std;
bool bfs(int rGraph[][6], int s, int t, int parent[])
{
bool visited[6];
memset(visited, 0, sizeof(visited));
queue <int> q;
q.push(s);
visited[s] = true;
parent[s] = -1;
while (!q.empty())
{
int u = q.front();
q.pop();
for (int v = 0; v < 6; v++)
{
if (visited[v] == false && rGraph[u][v] > 0)
{
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
return (visited[t] == true);
}
int fordFulkerson(int graph[6][6], int s, int t)
{
int u, v;
int rGraph[6][6];
for (u = 0; u < 6; u++)
{
for (v = 0; v < 6; v++)
{
rGraph[u][v] = graph[u][v];
}
}
int parent[6];
int max_flow = 0;
while (bfs(rGraph, s, t, parent))
{
int path_flow = INT_MAX;
for (v = t; v != s; v = parent[v])
{
u = parent[v];
path_flow = min(path_flow, rGraph[u][v]);
}
for (v = t; v != s; v = parent[v])
{
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
max_flow += path_flow;
}
return max_flow;
}
int main()
{
int graph[6][6] = { {0, 16, 13, 0, 0, 0},
{0, 0, 10, 12, 0, 0},
{0, 4, 0, 0, 14, 0},
{0, 0, 9, 0, 0, 20},
{0, 0, 0, 7, 0, 4},
{0, 0, 0, 0, 0, 0}
};
cout << "The maximum possible flow is " << fordFulkerson(graph, 0, 5);
getch();
}
Output The maximum possible flow is 23
Sanfoundry Global Education & Learning Series – 1000 C++ Programs.
advertisement
advertisement
If you wish to look at all C++ Programming examples, go to C++ Programs.
Related Posts:
- Apply for Computer Science Internship
- Practice Computer Science MCQs
- Practice Programming MCQs
- Apply for C++ Internship
- Check C++ Books