Discrete Mathematics Questions and Answers – Graphs – Lattices

This set of Discrete Mathematics Multiple Choice Questions & Answers (MCQs) focuses on “Graphs – Lattices”.

1. A Poset in which every pair of elements has both a least upper bound and a greatest lower bound is termed as _______
a) sublattice
b) lattice
c) trail
d) walk
View Answer

Answer: b
Explanation: A poset in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice. A lattice can contain sublattices which are subsets of that lattice.

2. In the poset (Z+, |) (where Z+ is the set of all positive integers and | is the divides relation) are the integers 9 and 351 comparable?
a) comparable
b) not comparable
c) comparable but not determined
d) determined but not comparable
View Answer

Answer: a
Explanation: The two integers 9 and 351 are comparable since 9|351 i.e, 9 divides 351. But 5 and 127 are not comparable since 5 | 127 i.e 5 does not divide 127.

3. If every two elements of a poset are comparable then the poset is called ________
a) sub ordered poset
b) totally ordered poset
c) sub lattice
d) semigroup
View Answer

Answer: b
Explanation: A poset (P, <=) is known as totally ordered if every two elements of the poset are comparable. “<=” is called a total order and a totally ordered set is also termed as a chain.
advertisement
advertisement

4. ______ and _______ are the two binary operations defined for lattices.
a) Join, meet
b) Addition, subtraction
c) Union, intersection
d) Multiplication, modulo division
View Answer

Answer: a
Explanation: Join and meet are the binary operations reserved for lattices. The join of two elements is their least upper bound. It is denoted by V, not to be confused with disjunction. The meet of two elements is their greatest lower bound. It is denoted by ∧ and not to be confused with a conjunction.

5. A ________ has a greatest element and a least element which satisfy 0<=a<=1 for every a in the lattice(say, L).
a) semilattice
b) join semilattice
c) meet semilattice
d) bounded lattice
View Answer

Answer: d
Explanation: A lattice that has additionally a supremum element and an infimum element which satisfy 0<=a<=1, for every an in the lattice is called a bounded lattice. A partially ordered set is a bounded lattice if and only if every finite set (including the empty set) of elements has a join and a meet.

6. The graph given below is an example of _________
Graph is example of non-lattice poset where b & c have common upper bounds d, e & f
a) non-lattice poset
b) semilattice
c) partial lattice
d) bounded lattice
View Answer

Answer: a
Explanation: The graph is an example of non-lattice poset where b and c have common upper bounds d, e and f but none of them is the least upper bound.

7. A sublattice(say, S) of a lattice(say, L) is a convex sublattice of L if _________
a) x>=z, where x in S implies z in S, for every element x, y in L
b) x=y and y<=z, where x, y in S implies z in S, for every element x, y, z in L
c) x<=y<=z, where x, y in S implies z in S, for every element x, y, z in L
d) x=y and y>=z, where x, y in S implies z in S, for every element x, y, z in L
View Answer

Answer: c
Explanation: A sublattice S of a lattice L is a convex sublattice of L, if x ≤ z ≤ y and x, y in S implies that z belongs to S, for all elements x, y, z in L.
advertisement

8. The graph is the smallest non-modular lattice N5. A lattice is _______ if and only if it does not have a _______ isomorphic to N5.
The graph is non-modular lattice N5 for lattice moduler & semilattice isomorphic to N5
a) non-modular, complete lattice
b) moduler, semilattice
c) non-modular, sublattice
d) modular, sublattice
View Answer

Answer: d
Explanation: A lattice (L, ∨, ∧) is modular if for all elements a, b, c of L, the following identity holds->modular identity: (a ∧ c) ∨ (b ∧ c) = [(a ∧ c) ∨ b] ∧ c. This condition is equivalent to the following axiom -> modular law: a ≤ c implies a ∨ (b ∧ c) = (a ∨ b) ∧ c. A lattice is modular if and only if it does not have a sublattice isomorphic to N5.

9. Every poset that is a complete semilattice must always be a _______
a) sublattice
b) complete lattice
c) free lattice
d) partial lattice
View Answer

Answer: b
Explanation: A poset is called a complete lattice if all its subsets have both a join and a meet. Every complete lattice is a bounded lattice. Every poset that is a complete semilattice must always be a complete lattice.
advertisement

10. A free semilattice has the _______ property.
a) intersection
b) commutative and associative
c) identity
d) universal
View Answer

Answer: d
Explanation: Any set X may be used to generate the free semilattice FX. The free semilattice is defined to consist of all of the finite subsets of X with the semilattice operation given by ordinary set union; the free semilattice has the universal property.

Sanfoundry Global Education & Learning Series – Discrete Mathematics.

To practice all areas of Discrete Mathematics, here is complete set of 1000+ Multiple Choice Questions and Answers.

If you find a mistake in question / option / answer, kindly take a screenshot and email to [email protected]

advertisement
advertisement
Subscribe to our Newsletters (Subject-wise). Participate in the Sanfoundry Certification contest to get free Certificate of Merit. Join our social networks below and stay updated with latest contests, videos, internships and jobs!

Youtube | Telegram | LinkedIn | Instagram | Facebook | Twitter | Pinterest
Manish Bhojasia - Founder & CTO at Sanfoundry
Manish Bhojasia, a technology veteran with 20+ years @ Cisco & Wipro, is Founder and CTO at Sanfoundry. He lives in Bangalore, and focuses on development of Linux Kernel, SAN Technologies, Advanced C, Data Structures & Alogrithms. Stay connected with him at LinkedIn.

Subscribe to his free Masterclasses at Youtube & discussions at Telegram SanfoundryClasses.