This is the java implementation of multiplication of two matrices consisting of complex numbers. Complex numbers are of the form a+bi.
Here is the source code of the Java Program to Perform Complex Number Multiplication. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
//This is a sample program to find the multiplication of two matrices consisting of complex numbers of any dimension
import java.util.Scanner;
public class Complex_Multiplication_Matrix
{
private double real=0.0, img=0.0;
public Complex_Multiplication_Matrix(double real, double img)
{
this.real = real;
this.img = img;
}
public Complex_Multiplication_Matrix()
{
this.real = 0;
this.img = 0;
}
public Complex_Multiplication_Matrix complex_Form(double re, double im)
{
Complex_Multiplication_Matrix res = new Complex_Multiplication_Matrix();
res.real = re;
res.img = im;
return res;
}
public Complex_Multiplication_Matrix multiplication(Complex_Multiplication_Matrix C2)
{
Complex_Multiplication_Matrix Res = new Complex_Multiplication_Matrix();
Res.real = (this.real * C2.real) - (this.img * C2.img);
Res.img = (this.real * C2.img) + (this.img * C2.real);
return Res;
}
public Complex_Multiplication_Matrix addtion(Complex_Multiplication_Matrix C2)
{
Complex_Multiplication_Matrix Res = new Complex_Multiplication_Matrix();
this.real += C2.real;
this.img += C2.img;
Res.real = this.real;
Res.img = this.img;
return Res;
}
public Complex_Multiplication_Matrix[][] matrix_multiplication(Complex_Multiplication_Matrix[][] a, Complex_Multiplication_Matrix[][] b, Complex_Multiplication_Matrix[][] res, int n)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
res[i][j] = res[i][j].addtion(a[i][k].multiplication(b[k][j]));
return res;
}
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
System.out.println("Enter the dimension of the square matrix: ");
int n = sc.nextInt();
double re,im;
Complex_Multiplication_Matrix[][] a = new Complex_Multiplication_Matrix[n][n];
Complex_Multiplication_Matrix[][] b = new Complex_Multiplication_Matrix[n][n];
Complex_Multiplication_Matrix[][] res = new Complex_Multiplication_Matrix[n][n];
Complex_Multiplication_Matrix C = new Complex_Multiplication_Matrix();
System.out.println("Enter the complex elements of 1st matrix: ");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
re = sc.nextDouble();
im = sc.nextDouble();
a[i][j] = C.complex_Form(re, im);
}
}
System.out.println("Enter the complex elements of matrix: ");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
re = sc.nextDouble();
im = sc.nextDouble();
b[i][j] = C.complex_Form(re, im);
}
}
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
re = 0.0;
im = 0.0;
res[i][j] = C.complex_Form(re, im);
}
}
res = C.matrix_multiplication(a, b, res, n);
System.out.println("The Multiplication is:");
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
System.out.print(res[i][j].real+"+"+res[i][j].img+"i ");
System.out.println();
}
sc.close();
}
}
Output:
$ javac Complex_Multiplication_Matrix.java $ java Complex_Multiplication_Matrix Enter the dimension of the square matrix: 2 Enter the complex elements of matrix: 1 2 1 2 1 2 1 2 Enter the complex elements of matrix: 1 2 1 2 1 2 1 2 The Multiplication is: -6.0+8.0i -6.0+8.0i -6.0+8.0i -6.0+8.0i
Sanfoundry Global Education & Learning Series – 1000 Java Programs.
advertisement
Here’s the list of Best Books in Java Programming, Data Structures and Algorithms.
Related Posts:
- Check Programming Books
- Apply for Java Internship
- Check Java Books
- Practice Information Technology MCQs
- Apply for Computer Science Internship