This is the java implementation of performing Discrete Fourier Transform using Fast Fourier Transform algorithm. This class finds the DFT of N (power of 2) complex elements, generated randomly, using FFT. Further verification is done by taking the Inverse Discrete Fourier Transform, again using FFT.
Here is the source code of the Java Program to Compute Discrete Fourier Transform Using the Fast Fourier Transform Approach. The Java program is successfully compiled and run on a Windows system. The program output is also shown below.
// This is a sample program to perform DFT using FFT, FFT is performed on random input sequence
public class FFT
{
public static class Complex
{
private final double re; // the real part
private final double im; // the imaginary part
// create a new object with the given real and imaginary parts
public Complex(double real, double imag)
{
re = real;
im = imag;
}
// return a string representation of the invoking Complex object
public String toString()
{
if (im == 0)
return re + "";
if (re == 0)
return im + "i";
if (im < 0)
return re + " - " + (-im) + "i";
return re + " + " + im + "i";
}
// return abs/modulus/magnitude and angle/phase/argument
public double abs()
{
return Math.hypot(re, im);
} // Math.sqrt(re*re + im*im)
public double phase()
{
return Math.atan2(im, re);
} // between -pi and pi
// return a new Complex object whose value is (this + b)
public Complex plus(Complex b)
{
Complex a = this; // invoking object
double real = a.re + b.re;
double imag = a.im + b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this - b)
public Complex minus(Complex b)
{
Complex a = this;
double real = a.re - b.re;
double imag = a.im - b.im;
return new Complex(real, imag);
}
// return a new Complex object whose value is (this * b)
public Complex times(Complex b)
{
Complex a = this;
double real = a.re * b.re - a.im * b.im;
double imag = a.re * b.im + a.im * b.re;
return new Complex(real, imag);
}
// scalar multiplication
// return a new object whose value is (this * alpha)
public Complex times(double alpha)
{
return new Complex(alpha * re, alpha * im);
}
// return a new Complex object whose value is the conjugate of this
public Complex conjugate() {
return new Complex(re, -im);
}
// return a new Complex object whose value is the reciprocal of this
public Complex reciprocal()
{
double scale = re * re + im * im;
return new Complex(re / scale, -im / scale);
}
// return the real or imaginary part
public double re()
{
return re;
}
public double im()
{
return im;
}
// return a / b
public Complex divides(Complex b)
{
Complex a = this;
return a.times(b.reciprocal());
}
// return a new Complex object whose value is the complex exponential of
// this
public Complex exp()
{
return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re)
* Math.sin(im));
}
// return a new Complex object whose value is the complex sine of this
public Complex sin()
{
return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re)
* Math.sinh(im));
}
// return a new Complex object whose value is the complex cosine of this
public Complex cos()
{
return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re)
* Math.sinh(im));
}
// return a new Complex object whose value is the complex tangent of
// this
public Complex tan()
{
return sin().divides(cos());
}
// a static version of plus
public static Complex plus(Complex a, Complex b)
{
double real = a.re + b.re;
double imag = a.im + b.im;
Complex sum = new Complex(real, imag);
return sum;
}
// compute the FFT of x[], assuming its length is a power of 2
public static Complex[] fft(Complex[] x)
{
int N = x.length;
// base case
if (N == 1)
return new Complex[] { x[0] };
// radix 2 Cooley-Tukey FFT
if (N % 2 != 0)
{
throw new RuntimeException("N is not a power of 2");
}
// fft of even terms
Complex[] even = new Complex[N / 2];
for (int k = 0; k < N / 2; k++)
{
even[k] = x[2 * k];
}
Complex[] q = fft(even);
// fft of odd terms
Complex[] odd = even; // reuse the array
for (int k = 0; k < N / 2; k++)
{
odd[k] = x[2 * k + 1];
}
Complex[] r = fft(odd);
// combine
Complex[] y = new Complex[N];
for (int k = 0; k < N / 2; k++)
{
double kth = -2 * k * Math.PI / N;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = q[k].plus(wk.times(r[k]));
y[k + N / 2] = q[k].minus(wk.times(r[k]));
}
return y;
}
// compute the inverse FFT of x[], assuming its length is a power of 2
public static Complex[] ifft(Complex[] x)
{
int N = x.length;
Complex[] y = new Complex[N];
// take conjugate
for (int i = 0; i < N; i++)
{
y[i] = x[i].conjugate();
}
// compute forward FFT
y = fft(y);
// take conjugate again
for (int i = 0; i < N; i++)
{
y[i] = y[i].conjugate();
}
// divide by N
for (int i = 0; i < N; i++)
{
y[i] = y[i].times(1.0 / N);
}
return y;
}
// display an array of Complex numbers to standard output
public static void show(Complex[] x, String title)
{
System.out.println(title);
for (int i = 0; i < x.length; i++)
{
System.out.println(x[i]);
}
System.out.println();
}
public static void main(String[] args)
{
int N = 8;//Integer.parseInt(args[0]);
Complex[] x = new Complex[N];
// original data
for (int i = 0; i < N; i++)
{
x[i] = new Complex(i, 0);
x[i] = new Complex(-2 * Math.random() + 1, 0);
}
show(x, "x");
// FFT of original data
Complex[] y = fft(x);
show(y, "y = fft(x)");
// take inverse FFT
Complex[] z = ifft(y);
show(z, "z = ifft(y)");
}
}
}
Output:
$ javac FFT.java $ java FFT x 0.5568836254037923 0.8735842104393365 0.6099699812709252 0.5631502515566189 -0.518857260970139 -0.5946393148293805 0.47144753318047794 -0.3501597962417593 y = fft(x) 1.6113792298098721 1.4681239692650163 - 1.8225209872296184i -1.0433911500177497 - 0.06595444029509645i 0.6833578034828462 - 1.545476091048724i 0.6275085279602408 0.6833578034828462 + 1.545476091048724i -1.0433911500177497 + 0.06595444029509645i 1.4681239692650163 + 1.8225209872296184i z = ifft(y) 0.5568836254037923 0.8735842104393365 - 5.652078740871965E-17i 0.6099699812709252 - 4.24102681660054E-18i 0.5631502515566189 - 5.4501515053796015E-17i -0.518857260970139 -0.5946393148293805 + 5.4501515053796015E-17i 0.47144753318047794 + 4.24102681660054E-18i -0.3501597962417593 + 5.652078740871965E-17i
Sanfoundry Global Education & Learning Series – 1000 Java Programs.
advertisement
advertisement
Here’s the list of Best Books in Java Programming, Data Structures and Algorithms.
Related Posts:
- Practice BCA MCQs
- Practice Information Technology MCQs
- Practice Programming MCQs
- Apply for Computer Science Internship
- Check Programming Books